

XSL Transformations (XSLT) Version 2.0
W3C Recommendation 23 January 2007

This version:
http://www.w3.org/TR/2007/REC-xslt20-20070123/

Latest version:
http://www.w3.org/TR/xslt20/

Previous version:
http://www.w3.org/TR/2006/PR-xslt20-20061121/

Editor:
Michael Kay, Saxonica <http://www.saxonica.com/>

Please refer to the errata for this document, which may include some normative corrections.

See also translations.

Copyright © 2007 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.

Abstract

This specification defines the syntax and semantics of XSLT 2.0, a language for transforming XML documents into other XML documents.

XSLT 2.0 is a revised version of the XSLT 1.0 Recommendation [XSLT 1.0] published on 16 November 1999.

XSLT 2.0 is designed to be used in conjunction with XPath 2.0, which is defined in [XPath 2.0]. XSLT shares the same data model as XPath
2.0, which is defined in [Data Model], and it uses the library of functions and operators defined in [Functions and Operators].

XSLT 2.0 also includes optional facilities to serialize the results of a transformation, by means of an interface to the serialization component
described in [XSLT and XQuery Serialization].

This document contains hyperlinks to specific sections or definitions within other documents in this family of specifications. These links are
indicated visually by a superscript identifying the target specification: for example XP for XPath, DM for the XDM data model, FO for
Functions and Operators.

Status of this Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of
current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at
http://www.w3.org/TR/.

This Recommendation builds on the success of [XSLT 1.0], which was published on 16 November 1999. Many new features have been
added to the language (see J.2 New Functionality) while retaining a high level of backwards compatibility (see J.1 Incompatible Changes).
The changes have been designed to meet the requirements for XSLT 2.0 described in [XSLT 2.0 Requirements]. The way in which each
requirement has been addressed is outlined in I Checklist of Requirements.

XSLT 2.0 depends on a number of other specifications that have progressed to Recommendation status at the same time: see [XPath 2.0],
[Data Model], [Functions and Operators], and [XSLT and XQuery Serialization]. These subsidiary documents are also referenced in the
specification of XQuery 1.0.

This document has been produced by the XSL Working Group, which is part of the XML Activity. The document has been reviewed by W3C
Members and other interested parties, and is endorsed by the Director. It is a stable document and may be used as reference material or
cited as a normative reference from another document. W3C's role in making the Recommendation is to draw attention to the specification
and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.

A small number of editorial corrections and clarifications have been made to the document since it was published as a Proposed
Recommendation on 21 November 2006. These changes are listed at J.2.4 Changes since Proposed Recommendation.

Please record any comments about this document in W3C's public Bugzilla system (instructions can be found at
http://www.w3.org/XML/2005/04/qt-bugzilla). If access to that system is not feasible, you may send your comments to the W3C
XSLT/XPath/XQuery public comments mailing list, public-qt-comments@w3.org. It is helpful to include the string [XSLT] in the subject line of
your comment, whether made in Bugzilla or in email. Each Bugzilla entry and email message should contain only one comment. Archives of
the comments and responses are available at http://lists.w3.org/Archives/Public/public-qt-comments/.

General public discussion of XSLT takes place on the XSL-List forum.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent
disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual
who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance
with section 6 of the W3C Patent Policy.

Table of Contents

1 Introduction
 1.1 What is XSLT?
 1.2 What's New in XSLT 2.0?

Page 1 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

2 Concepts
 2.1 Terminology
 2.2 Notation
 2.3 Initiating a Transformation
 2.4 Executing a Transformation
 2.5 The Evaluation Context
 2.6 Parsing and Serialization
 2.7 Extensibility
 2.8 Stylesheets and XML Schemas
 2.9 Error Handling
3 Stylesheet Structure
 3.1 XSLT Namespace
 3.2 Reserved Namespaces
 3.3 Extension Attributes
 3.4 XSLT Media Type
 3.5 Standard Attributes
 3.6 Stylesheet Element
 3.6.1 The default-collation attribute
 3.6.2 User-defined Data Elements
 3.7 Simplified Stylesheet Modules
 3.8 Backwards-Compatible Processing
 3.9 Forwards-Compatible Processing
 3.10 Combining Stylesheet Modules
 3.10.1 Locating Stylesheet Modules
 3.10.2 Stylesheet Inclusion
 3.10.3 Stylesheet Import
 3.11 Embedded Stylesheet Modules
 3.12 Conditional Element Inclusion
 3.13 Built-in Types
 3.14 Importing Schema Components
4 Data Model
 4.1 XML Versions
 4.2 Stripping Whitespace from the Stylesheet
 4.3 Stripping Type Annotations from a Source Tree
 4.4 Stripping Whitespace from a Source Tree
 4.5 Attribute Types and DTD Validation
 4.6 Limits
 4.7 Disable Output Escaping
5 Features of the XSLT Language
 5.1 Qualified Names
 5.2 Unprefixed QNames in Expressions and Patterns
 5.3 Expressions
 5.4 The Static and Dynamic Context
 5.4.1 Initializing the Static Context
 5.4.2 Additional Static Context Components used by XSLT
 5.4.3 Initializing the Dynamic Context
 5.4.3.1 Maintaining Position: the Focus
 5.4.3.2 Other components of the XPath Dynamic Context
 5.4.4 Additional Dynamic Context Components used by XSLT
 5.5 Patterns
 5.5.1 Examples of Patterns
 5.5.2 Syntax of Patterns
 5.5.3 The Meaning of a Pattern
 5.5.4 Errors in Patterns
 5.6 Attribute Value Templates
 5.7 Sequence Constructors
 5.7.1 Constructing Complex Content
 5.7.2 Constructing Simple Content
 5.7.3 Namespace Fixup
 5.8 URI References
6 Template Rules
 6.1 Defining Templates
 6.2 Defining Template Rules
 6.3 Applying Template Rules
 6.4 Conflict Resolution for Template Rules
 6.5 Modes
 6.6 Built-in Template Rules
 6.7 Overriding Template Rules
7 Repetition
8 Conditional Processing
 8.1 Conditional Processing with xsl:if
 8.2 Conditional Processing with xsl:choose
9 Variables and Parameters
 9.1 Variables
 9.2 Parameters
 9.3 Values of Variables and Parameters
 9.4 Creating implicit document nodes
 9.5 Global Variables and Parameters
 9.6 Local Variables and Parameters
 9.7 Scope of Variables
 9.8 Circular Definitions
10 Callable Components
 10.1 Named Templates
 10.1.1 Passing Parameters to Templates
 10.1.2 Tunnel Parameters
 10.2 Named Attribute Sets
 10.3 Stylesheet Functions

Page 2 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

11 Creating Nodes and Sequences
 11.1 Literal Result Elements
 11.1.1 Setting the Type Annotation for Literal Result Elements
 11.1.2 Attribute Nodes for Literal Result Elements
 11.1.3 Namespace Nodes for Literal Result Elements
 11.1.4 Namespace Aliasing
 11.2 Creating Element Nodes Using xsl:element
 11.2.1 Setting the Type Annotation for a Constructed Element Node
 11.3 Creating Attribute Nodes Using xsl:attribute
 11.3.1 Setting the Type Annotation for a Constructed Attribute Node
 11.4 Creating Text Nodes
 11.4.1 Literal Text Nodes
 11.4.2 Creating Text Nodes Using xsl:text
 11.4.3 Generating Text with xsl:value-of
 11.5 Creating Document Nodes
 11.6 Creating Processing Instructions
 11.7 Creating Namespace Nodes
 11.8 Creating Comments
 11.9 Copying Nodes
 11.9.1 Shallow Copy
 11.9.2 Deep Copy
 11.10 Constructing Sequences
12 Numbering
 12.1 Formatting a Supplied Number
 12.2 Numbering based on Position in a Document
 12.3 Number to String Conversion Attributes
13 Sorting
 13.1 The xsl:sort Element
 13.1.1 The Sorting Process
 13.1.2 Comparing Sort Key Values
 13.1.3 Sorting Using Collations
 13.2 Creating a Sorted Sequence
 13.3 Processing a Sequence in Sorted Order
14 Grouping
 14.1 The Current Group
 14.2 The Current Grouping Key
 14.3 The xsl:for-each-group Element
 14.4 Examples of Grouping
15 Regular Expressions
 15.1 The xsl:analyze-string instruction
 15.2 Captured Substrings
 15.3 Examples of Regular Expression Matching
16 Additional Functions
 16.1 Multiple Source Documents
 16.2 Reading Text Files
 16.3 Keys
 16.3.1 The xsl:key Declaration
 16.3.2 The key Function
 16.4 Number Formatting
 16.4.1 Defining a Decimal Format
 16.4.2 Processing the Picture String
 16.4.3 Analysing the Picture String
 16.4.4 Formatting the Number
 16.5 Formatting Dates and Times
 16.5.1 The Picture String
 16.5.2 The Language, Calendar, and Country Arguments
 16.5.3 Examples of Date and Time Formatting
 16.6 Miscellaneous Additional Functions
 16.6.1 current
 16.6.2 unparsed-entity-uri
 16.6.3 unparsed-entity-public-id
 16.6.4 generate-id
 16.6.5 system-property
17 Messages
18 Extensibility and Fallback
 18.1 Extension Functions
 18.1.1 Testing Availability of Functions
 18.1.2 Calling Extension Functions
 18.1.3 External Objects
 18.1.4 Testing Availability of Types
 18.2 Extension Instructions
 18.2.1 Designating an Extension Namespace
 18.2.2 Testing Availability of Instructions
 18.2.3 Fallback
19 Final Result Trees
 19.1 Creating Final Result Trees
 19.2 Validation
 19.2.1 Validating Constructed Elements and Attributes
 19.2.1.1 Validation using the [xsl:]validation Attribute
 19.2.1.2 Validation using the [xsl:]type Attribute
 19.2.1.3 The Validation Process
 19.2.2 Validating Document Nodes
20 Serialization
 20.1 Character Maps
 20.2 Disabling Output Escaping
21 Conformance
 21.1 Basic XSLT Processor

Page 3 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 21.2 Schema-Aware XSLT Processor
 21.3 Serialization Feature
 21.4 Backwards Compatibility Feature

Appendices

A References
 A.1 Normative References
 A.2 Other References
B The XSLT Media Type
 B.1 Registration of MIME Media Type application/xslt+xml
 B.2 Fragment Identifiers
C Glossary (Non-Normative)
D Element Syntax Summary (Non-Normative)
E Summary of Error Conditions (Non-Normative)
F Checklist of Implementation-Defined Features (Non-Normative)
G Schema for XSLT Stylesheets (Non-Normative)
H Acknowledgements (Non-Normative)
I Checklist of Requirements (Non-Normative)
J Changes from XSLT 1.0 (Non-Normative)
 J.1 Incompatible Changes
 J.1.1 Tree construction: whitespace stripping
 J.1.2 Changes in Serialization Behavior
 J.1.3 Backwards Compatibility Behavior
 J.1.4 Incompatibility in the Absence of a Schema
 J.1.5 Compatibility in the Presence of a Schema
 J.1.6 XPath 2.0 Backwards Compatibility
 J.2 New Functionality
 J.2.1 Pervasive changes
 J.2.2 Major Features
 J.2.3 Minor Changes
 J.2.4 Changes since Proposed Recommendation

1 Introduction

1.1 What is XSLT?

This specification defines the syntax and semantics of the XSLT 2.0 language.

[DEFINITION: A transformation in the XSLT language is expressed in the form of a stylesheet, whose syntax is well-formed XML [XML 1.0]
conforming to the Namespaces in XML Recommendation [Namespaces in XML 1.0].]

A stylesheet generally includes elements that are defined by XSLT as well as elements that are not defined by XSLT. XSLT-defined
elements are distinguished by use of the namespace http://www.w3.org/1999/XSL/Transform (see 3.1 XSLT Namespace), which is referred
to in this specification as the XSLT namespace. Thus this specification is a definition of the syntax and semantics of the XSLT namespace.

The term stylesheet reflects the fact that one of the important roles of XSLT is to add styling information to an XML source document, by
transforming it into a document consisting of XSL formatting objects (see [Extensible Stylesheet Language (XSL)]), or into another
presentation-oriented format such as HTML, XHTML, or SVG. However, XSLT is used for a wide range of transformation tasks, not
exclusively for formatting and presentation applications.

A transformation expressed in XSLT describes rules for transforming zero or more source trees into one or more result trees. The structure
of these trees is described in [Data Model]. The transformation is achieved by a set of template rules. A template rule associates a pattern,
which matches nodes in the source document, with a sequence constructor. In many cases, evaluating the sequence constructor will cause
new nodes to be constructed, which can be used to produce part of a result tree. The structure of the result trees can be completely different
from the structure of the source trees. In constructing a result tree, nodes from the source trees can be filtered and reordered, and arbitrary
structure can be added. This mechanism allows a stylesheet to be applicable to a wide class of documents that have similar source tree
structures.

[DEFINITION: A stylesheet may consist of several stylesheet modules, contained in different XML documents. For a given transformation, one
of these functions as the principal stylesheet module. The complete stylesheet is assembled by finding the stylesheet modules referenced
directly or indirectly from the principal stylesheet module using xsl:include and xsl:import elements: see 3.10.2 Stylesheet Inclusion and
3.10.3 Stylesheet Import.]

1.2 What's New in XSLT 2.0?

XSLT 1.0 was published in November 1999, and version 2.0 represents a significant increase in the capability of the language. A detailed list
of changes is included in J Changes from XSLT 1.0. XSLT 2.0 has been developed in parallel with XPath 2.0 (see [XPath 2.0]), so the
changes to XPath must be considered alongside the changes to XSLT.

2 Concepts

2.1 Terminology

For a full glossary of terms, see C Glossary.

[DEFINITION: The software responsible for transforming source trees into result trees using an XSLT stylesheet is referred to as the
processor. This is sometimes expanded to XSLT processor to avoid any confusion with other processors, for example an XML processor.]

[DEFINITION: A specific product that performs the functions of an XSLT processor is referred to as an implementation].

[DEFINITION: The term result tree is used to refer to any tree constructed by instructions in the stylesheet. A result tree is either a final result

Page 4 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

tree or a temporary tree.]

[DEFINITION: A final result tree is a result tree that forms part of the final output of a transformation. Once created, the contents of a final
result tree are not accessible within the stylesheet itself.] The xsl:result-document instruction always creates a final result tree, and a final
result tree may also be created implicitly by the initial template. The conditions under which this happens are described in 2.4 Executing a
Transformation. A final result tree MAY be serialized as described in 20 Serialization.

[DEFINITION: The term source tree means any tree provided as input to the transformation. This includes the document containing the initial
context node if any, documents containing nodes supplied as the values of stylesheet parameters, documents obtained from the results of
functions such as document, doc FO, and collectionFO, and documents returned by extension functions or extension instructions. In the
context of a particular XSLT instruction, the term source tree means any tree provided as input to that instruction; this may be a source tree
of the transformation as a whole, or it may be a temporary tree produced during the course of the transformation.]

[DEFINITION: The term temporary tree means any tree that is neither a source tree nor a final result tree.] Temporary trees are used to hold
intermediate results during the execution of the transformation.

In this specification the phrases MUST, MUST NOT, SHOULD, SHOULD NOT, MAY, REQUIRED, and RECOMMENDED are to be interpreted as
described in [RFC2119].

Where the phrase MUST, MUST NOT, or REQUIRED relates to the behavior of the XSLT processor, then an implementation is not conformant
unless it behaves as specified, subject to the more detailed rules in 21 Conformance.

Where the phrase MUST, MUST NOT, or REQUIRED relates to a stylesheet, then the processor MUST enforce this constraint on stylesheets by
reporting an error if the constraint is not satisfied.

Where the phrase SHOULD, SHOULD NOT, or RECOMMENDED relates to a stylesheet, then a processor MAY produce warning messages if the
constraint is not satisfied, but MUST NOT treat this as an error.

[DEFINITION: In this specification, the term implementation-defined refers to a feature where the implementation is allowed some flexibility,
and where the choices made by the implementation MUST be described in documentation that accompanies any conformance claim.]

[DEFINITION: The term implementation-dependent refers to a feature where the behavior MAY vary from one implementation to another, and
where the vendor is not expected to provide a full specification of the behavior.] (This might apply, for example, to limits on the size of source
documents that can be transformed.)

In all cases where this specification leaves the behavior implementation-defined or implementation-dependent, the implementation has the
option of providing mechanisms that allow the user to influence the behavior.

A paragraph labeled as a Note or described as an example is non-normative.

Many terms used in this document are defined in the XPath specification [XPath 2.0] or the XDM specification [Data Model]. Particular
attention is drawn to the following:

[DEFINITION: The term atomization is defined in Section 2.4.2 AtomizationXP. It is a process that takes as input a sequence of nodes
and atomic values, and returns a sequence of atomic values, in which the nodes are replaced by their typed values as defined in [Data
Model].] For some nodes (for example, elements with element-only content), atomization generates a dynamic error.

[DEFINITION: The term typed value is defined in Section 5.15 typed-value AccessorDM. Every node except an element defined in the
schema with element-only content has a typed value. For example, the typed value of an attribute of type xs:IDREFS is a sequence of
zero or more xs:IDREF values.]

[DEFINITION: The term string value is defined in Section 5.13 string-value AccessorDM. Every node has a string value. For example, the
string value of an element is the concatenation of the string values of all its descendant text nodes.]

[DEFINITION: The term XPath 1.0 compatibility mode is defined in Section 2.1.1 Static ContextXP. This is a setting in the static context
of an XPath expression; it has two values, true and false. When the value is set to true, the semantics of function calls and certain
other operations are adjusted to give a greater degree of backwards compatibility between XPath 2.0 and XPath 1.0.]

[DEFINITION: The term core function means a function that is specified in [Functions and Operators] and that is in the standard function
namespace.]

2.2 Notation

[DEFINITION: An XSLT element is an element in the XSLT namespace whose syntax and semantics are defined in this specification.] For a
non-normative list of XSLT elements, see D Element Syntax Summary.

In this document the specification of each XSLT element is preceded by a summary of its syntax in the form of a model for elements of that
element type. A full list of all these specifications can be found in D Element Syntax Summary. The meaning of syntax summary notation is
as follows:

An attribute that is REQUIRED is shown with its name in bold. An attribute that may be omitted is shown with a question mark following
its name.
An attribute that is deprecated is shown in a grayed font within square brackets.
The string that occurs in the place of an attribute value specifies the allowed values of the attribute. If this is surrounded by curly
brackets ({...}), then the attribute value is treated as an attribute value template, and the string occurring within curly brackets
specifies the allowed values of the result of evaluating the attribute value template. Alternative allowed values are separated by |. A
quoted string indicates a value equal to that specific string. An unquoted, italicized name specifies a particular type of value.
In all cases where this specification states that the value of an attribute MUST be one of a limited set of values, leading and trailing
whitespace in the attribute value is ignored. In the case of an attribute value template, this applies to the effective value obtained when
the attribute value template is expanded.
Unless the element is REQUIRED to be empty, the model element contains a comment specifying the allowed content. The allowed
content is specified in a similar way to an element type declaration in XML; sequence constructor means that any mixture of text
nodes, literal result elements, extension instructions, and XSLT elements from the instruction category is allowed; other-declarations
means that any mixture of XSLT elements from the declaration category, other than xsl:import, is allowed, together with user-defined
data elements.

Page 5 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The element is prefaced by comments indicating if it belongs to the instruction category or declaration category or both. The
category of an element only affects whether it is allowed in the content of elements that allow a sequence constructor or other-
declarations.

Example: Syntax Notation

This example illustrates the notation used to describe XSLT elements.

<!-- Category: instruction -->
<xsl:example-element
 select = expression
 debug? = { "yes" | "no" }>
 <!-- Content: ((xsl:variable | xsl:param)*, xsl:sequence) -->
</xsl:example-element>

This example defines a (non-existent) element xsl:example-element. The element is classified as an instruction. It takes a mandatory
select attribute, whose value is an XPath expression, and an optional debug attribute, whose value MUST be either yes or no; the curly
brackets indicate that the value can be defined as an attribute value template, allowing a value such as debug="{$debug}", where the
variable debug is evaluated to yield "yes" or "no" at run-time.

The content of an xsl:example-element instruction is defined to be a sequence of zero or more xsl:variable and xsl:param elements,
followed by an xsl:sequence element.

[ERR XTSE0010] A static error is signaled if an XSLT-defined element is used in a context where it is not permitted, if a REQUIRED attribute is
omitted, or if the content of the element does not correspond to the content that is allowed for the element.

Attributes are validated as follows. These rules apply to the value of the attribute after removing leading and trailing whitespace.

[ERR XTSE0020] It is a static error if an attribute (other than an attribute written using curly brackets in a position where an attribute value
template is permitted) contains a value that is not one of the permitted values for that attribute.
[ERR XTDE0030] It is a non-recoverable dynamic error if the effective value of an attribute written using curly brackets, in a position
where an attribute value template is permitted, is a value that is not one of the permitted values for that attribute. If the processor is
able to detect the error statically (for example, when any XPath expressions within the curly brackets can be evaluated statically), then
the processor may optionally signal this as a static error.

Special rules apply if the construct appears in part of the stylesheet that is processed with forwards-compatible behavior: see 3.9 Forwards-
Compatible Processing.

[DEFINITION: Some constructs defined in this specification are described as being deprecated. The use of this term implies that stylesheet
authors SHOULD NOT use the construct, and that the construct may be removed in a later version of this specification.] All constructs that are
deprecated in this specification are also (as it happens) optional features that implementations are NOT REQUIRED to provide.

Note:

This working draft includes a non-normative XML Schema for XSLT stylesheet modules (see G Schema for XSLT Stylesheets). The
syntax summaries described in this section are normative.

XSLT defines a set of standard functions which are additional to those defined in [Functions and Operators]. The signatures of these
functions are described using the same notation as used in [Functions and Operators]. The names of these functions are all in the standard
function namespace.

2.3 Initiating a Transformation

This document does not specify any application programming interfaces or other interfaces for initiating a transformation. This section,
however, describes the information that is supplied when a transformation is initiated. Except where otherwise indicated, the information is
REQUIRED.

Implementations MAY allow a transformation to run as two or more phases, for example parsing, compilation and execution. Such a
distinction is outside the scope of this specification, which treats transformation as a single process controlled using a set of stylesheet
modules, supplied in the form of XML documents.

The following information is supplied to execute a transformation:

The stylesheet module that is to act as the principal stylesheet module for the transformation. The complete stylesheet is assembled by
recursively expanding the xsl:import and xsl:include declarations in the principal stylesheet module, as described in 3.10.2
Stylesheet Inclusion and 3.10.3 Stylesheet Import.
A set (possibly empty) of values for stylesheet parameters (see 9.5 Global Variables and Parameters). These values are available for
use within expressions in the stylesheet.
[DEFINITION: A node that acts as the initial context node for the transformation. This node is accessible within the stylesheet as the
initial value of the XPath expressions . (dot) and self::node(), as described in 5.4.3.1 Maintaining Position: the Focus].
If no initial context node is supplied, then the context item, context position, and context size will initially be undefined, and the
evaluation of any expression that references these values will result in a dynamic error. (Note that the initial context size and context
position will always be 1 (one) when an initial context node is supplied, and will be undefined if no initial context node is supplied).
Optionally, the name of a named template which is to be executed as the entry point to the transformation. This template MUST exist
within the stylesheet. If no named template is supplied, then the transformation starts with the template rule that best matches the initial
context node, according to the rules defined in 6.4 Conflict Resolution for Template Rules. Either a named template, or an initial
context node, or both, MUST be supplied.
Optionally, an initial mode. This MUST either be the default mode, or a mode that is explicitly named in the mode attribute of an
xsl:template declaration within the stylesheet. If an initial mode is supplied, then in searching for the template rule that best matches
the initial context node, the processor considers only those rules that apply to the initial mode. If no initial mode is supplied, the default
mode is used.

Page 6 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

A base output URI. [DEFINITION: The base output URI is a URI to be used as the base URI when resolving a relative URI allocated to
a final result tree. If the transformation generates more than one final result tree, then typically each one will be allocated a URI relative
to this base URI.] The way in which a base output URI is established is implementation-defined.
A mechanism for obtaining a document node and a media type, given an absolute URI. The total set of available documents (modeled
as a mapping from URIs to document nodes) forms part of the context for evaluating XPath expressions, specifically the doc FO
function. The XSLT document function additionally requires the media type of the resource representation, for use in interpreting any
fragment identifier present within a URI Reference.

Note:
The set of documents that are available to the stylesheet is implementation-dependent, as is the processing that is carried out to
construct a tree representing the resource retrieved using a given URI. Some possible ways of constructing a document
(specifically, rules for constructing a document from an Infoset or from a PSVI) are described in [Data Model].

[ERR XTDE0040] It is a non-recoverable dynamic error if the invocation of the stylesheet specifies a template name that does not match the
expanded-QName of a named template defined in the stylesheet.

[ERR XTDE0045] It is a non-recoverable dynamic error if the invocation of the stylesheet specifies an initial mode (other than the default mode)
that does not match the expanded-QName in the mode attribute of any template defined in the stylesheet.

[ERR XTDE0047] It is a non-recoverable dynamic error if the invocation of the stylesheet specifies both an initial mode and an initial template.

[ERR XTDE0050] It is a non-recoverable dynamic error if the stylesheet that is invoked declares a visible stylesheet parameter with
required="yes" and no value for this parameter is supplied during the invocation of the stylesheet. A stylesheet parameter is visible if it is
not masked by another global variable or parameter with the same name and higher import precedence.

[DEFINITION: The transformation is performed by evaluating an initial template. If a named template is supplied when the transformation is
initiated, then this is the initial template; otherwise, the initial template is the template rule selected according to the rules of the xsl:apply-
templates instruction for processing the initial context node in the initial mode.]

Parameters passed to the transformation by the client application are matched against stylesheet parameters (see 9.5 Global Variables and
Parameters), not against the template parameters declared within the initial template. All template parameters within the initial template to be
executed will take their default values.

[ERR XTDE0060] It is a non-recoverable dynamic error if the initial template defines a template parameter that specifies required="yes".

A stylesheet can process further source documents in addition to those supplied when the transformation is invoked. These additional
documents can be loaded using the functions document (see 16.1 Multiple Source Documents) or doc FO or collectionFO (see [Functions and
Operators]), or they can be supplied as stylesheet parameters (see 9.5 Global Variables and Parameters), or as the result of an extension
function (see 18.1 Extension Functions).

2.4 Executing a Transformation

[DEFINITION: A stylesheet contains a set of template rules (see 6 Template Rules). A template rule has three parts: a pattern that is matched
against nodes, a (possibly empty) set of template parameters, and a sequence constructor that is evaluated to produce a sequence of
items.] In many cases these items are newly constructed nodes, which are then written to a result tree.

A transformation as a whole is executed by evaluating the sequence constructor of the initial template as described in 5.7 Sequence
Constructors.

If the initial template has an as attribute, then the result sequence of the initial template is checked against the required type in the same way
as for any other template. If this result sequence is non-empty, then it is used to construct an implicit final result tree, following the rules
described in 5.7.1 Constructing Complex Content: the effect is as if the initial template T were called by an implicit template of the form:

<xsl:template name="IMPLICIT">
 <xsl:result-document href="">
 <xsl:call-template name="T"/>
 </xsl:result-document>
</xsl:template>

An implicit result tree is also created when the result sequence is empty, provided that no xsl:result-document instruction has been
evaluated during the course of the transformation. In this situation the implicit result tree will consist of a document node with no children.

Note:

This means that there is always at least one result tree. It also means that if the content of the initial template is a single xsl:result-
document instruction, as in the example above, then only one result tree is produced, not two. It is useful to make the result document
explicit as this is the only way of invoking document-level validation.

If the result of the initial template is non-empty, and an explicit xsl:result-document instruction has been evaluated with the empty
attribute href="", then an error will occur [see ERR XTDE1490], since it is not possible to create two final result trees with the same URI.

A sequence constructor is a sequence of sibling nodes in the stylesheet, each of which is either an XSLT instruction, a literal result element,
a text node, or an extension instruction.

[DEFINITION: An instruction is either an XSLT instruction or an extension instruction.]

[DEFINITION: An XSLT instruction is an XSLT element whose syntax summary in this specification contains the annotation <!-- category:
instruction -->.]

Extension instructions are described in 18.2 Extension Instructions.

The main categories of XSLT instruction are as follows:

instructions that create new nodes: xsl:document, xsl:element, xsl:attribute, xsl:processing-instruction, xsl:comment,

Page 7 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:value-of, xsl:text, xsl:namespace;
an instruction that returns an arbitrary sequence by evaluating an XPath expression: xsl:sequence;
instructions that cause conditional or repeated evaluation of nested instructions: xsl:if, xsl:choose, xsl:for-each, xsl:for-each-
group;
instructions that invoke templates: xsl:apply-templates, xsl:apply-imports, xsl:call-template, xsl:next-match;
Instructions that declare variables: xsl:variable, xsl:param;
other specialized instructions: xsl:number, xsl:analyze-string, xsl:message, xsl:result-document.

Often, a sequence constructor will include an xsl:apply-templates instruction, which selects a sequence of nodes to be processed. Each of
the selected nodes is processed by searching the stylesheet for a matching template rule and evaluating the sequence constructor of that
template rule. The resulting sequences of items are concatenated, in order, to give the result of the xsl:apply-templates instruction, as
described in 6.3 Applying Template Rules; this sequence is often added to a result tree. Since the sequence constructors of the selected
template rules may themselves contain xsl:apply-templates instructions, this results in a cycle of selecting nodes, identifying template
rules, constructing sequences, and constructing result trees, that recurses through a source tree.

2.5 The Evaluation Context

The results of some expressions and instructions in a stylesheet may depend on information provided contextually. This context information
is divided into two categories: the static context, which is known during static analysis of the stylesheet, and the dynamic context, which is
not known until the stylesheet is evaluated. Although information in the static context is known at analysis time, it is sometimes used during
stylesheet evaluation.

Some context information can be set by means of declarations within the stylesheet itself. For example, the namespace bindings used for
any XPath expression are determined by the namespace declarations present in containing elements in the stylesheet. Other information
may be supplied externally or implicitly: an example is the current date and time.

The context information used in processing an XSLT stylesheet includes as a subset all the context information required when evaluating
XPath expressions. The XPath 2.0 specification defines a static and dynamic context that the host language (in this case, XSLT) may
initialize, which affects the results of XPath expressions used in that context. XSLT augments the context with additional information: this
additional information is used firstly by XSLT constructs outside the scope of XPath (for example, the xsl:sort element), and secondly, by
functions that are defined in the XSLT specification (such as key and format-number) that are available for use in XPath expressions
appearing within a stylesheet.

The static context for an expression or other construct in a stylesheet is determined by the place in which it appears lexically. The details
vary for different components of the static context, but in general, elements within a stylesheet module affect the static context for their
descendant elements within the same stylesheet module.

The dynamic context is maintained as a stack. When an instruction or expression is evaluated, it may add dynamic context information to the
stack; when evaluation is complete, the dynamic context reverts to its previous state. An expression that accesses information from the
dynamic context always uses the value at the top of the stack.

The most commonly used component of the dynamic context is the context item. This is an implicit variable whose value is the item (it may
be a node or an atomic value) currently being processed. The value of the context item can be referenced within an XPath expression using
the expression . (dot).

Full details of the static and dynamic context are provided in 5.4 The Static and Dynamic Context.

2.6 Parsing and Serialization

An XSLT stylesheet describes a process that constructs a set of final result trees from a set of source trees.

The stylesheet does not describe how a source tree is constructed. Some possible ways of constructing source trees are described in [Data
Model]. Frequently an implementation will operate in conjunction with an XML parser (or more strictly, in the terminology of [XML 1.0], an
XML processor), to build a source tree from an input XML document. An implementation MAY also provide an application programming
interface allowing the tree to be constructed directly, or allowing it to be supplied in the form of a DOM Document object (see [DOM Level
2]). This is outside the scope of this specification. Users should be aware, however, that since the input to the transformation is a tree
conforming to the XDM data model as described in [Data Model], constructs that might exist in the original XML document, or in the DOM,
but which are not within the scope of the data model, cannot be processed by the stylesheet and cannot be guaranteed to remain
unchanged in the transformation output. Such constructs include CDATA section boundaries, the use of entity references, and the
DOCTYPE declaration and internal DTD subset.

[DEFINITION: A frequent requirement is to output a final result tree as an XML document (or in other formats such as HTML). This process is
referred to as serialization.]

Like parsing, serialization is not part of the transformation process, and it is not REQUIRED that an XSLT processor MUST be able to perform
serialization. However, for pragmatic reasons, this specification describes declarations (the xsl:output element and the xsl:character-map
declarations, see 20 Serialization), and attributes on the xsl:result-document instruction, that allow a stylesheet to specify the desired
properties of a serialized output file. When serialization is not being performed, either because the implementation does not support the
serialization option, or because the user is executing the transformation in a way that does not invoke serialization, then the content of the
xsl:output and xsl:character-map declarations has no effect. Under these circumstances the processor MAY report any errors in an
xsl:output or xsl:character-map declaration, or in the serialization attributes of xsl:result-document, but is not REQUIRED to do so.

2.7 Extensibility

XSLT defines a number of features that allow the language to be extended by implementers, or, if implementers choose to provide the
capability, by users. These features have been designed, so far as possible, so that they can be used without sacrificing interoperability.
Extensions other than those explicitly defined in this specification are not permitted.

These features are all based on XML namespaces; namespaces are used to ensure that the extensions provided by one implementer do not
clash with those of a different implementer.

The most common way of extending the language is by providing additional functions, which can be invoked from XPath expressions. These
are known as extension functions, and are described in 18.1 Extension Functions.

Page 8 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

It is also permissible to extend the language by providing new instructions. These are referred to as extension instructions, and are
described in 18.2 Extension Instructions. A stylesheet that uses extension instructions must declare that it is doing so by using the [xsl:]
extension-element-prefixes attribute.

Extension instructions and extension functions defined according to these rules MAY be provided by the implementer of the XSLT processor,
and the implementer MAY also provide facilities to allow users to create further extension instructions and extension functions.

This specification defines how extension instructions and extension functions are invoked, but the facilities for creating new extension
instructions and extension functions are implementation-defined. For further details, see 18 Extensibility and Fallback.

The XSLT language can also be extended by the use of extension attributes (see 3.3 Extension Attributes), and by means of user-defined
data elements (see 3.6.2 User-defined Data Elements).

2.8 Stylesheets and XML Schemas

An XSLT stylesheet can make use of information from a schema. An XSLT transformation can take place in the absence of a schema (and,
indeed, in the absence of a DTD), but where the source document has undergone schema validity assessment, the XSLT processor has
access to the type information associated with individual nodes, not merely to the untyped text.

Information from a schema can be used both statically (when the stylesheet is compiled), and dynamically (during evaluation of the
stylesheet to transform a source document).

There are places within a stylesheet, and within XPath expressions and patterns in a stylesheet, where it is possible to refer to named type
definitions in a schema, or to element and attribute declarations. For example, it is possible to declare the types expected for the parameters
of a function. This is done using the SequenceType XP syntax defined in [XPath 2.0].

[DEFINITION: Type definitions and element and attribute declarations are referred to collectively as schema components.]

[DEFINITION: The schema components that may be referenced by name in a stylesheet are referred to as the in-scope schema
components. This set is the same throughout all the modules of a stylesheet.]

The conformance rules for XSLT 2.0, defined in 21 Conformance, distinguish between a basic XSLT processor and a schema-aware XSLT
processor. As the names suggest, a basic XSLT processor does not support the features of XSLT that require access to schema
information, either statically or dynamically. A stylesheet that works with a basic XSLT processor will produce the same results with a
schema-aware XSLT processor provided that the source documents are untyped (that is, they are not validated against a schema).
However, if source documents are validated against a schema then the results may be different from the case where they are not validated.
Some constructs that work on untyped data may fail with typed data (for example, an attribute of type xs:date cannot be used as an
argument of the substringFO function) and other constructs may produce different results depending on the data type (for example, given the
element <product price="10.00" discount="2.00"/>, the expression @price gt @discount will return true if the attributes have type
xs:decimal, but will return false if they are untyped).

There is a standard set of type definitions that are always available as in-scope schema components in every stylesheet. These are defined
in 3.13 Built-in Types. The set of built-in types varies between a basic XSLT processor and a schema-aware XSLT processor.

The remainder of this section describes facilities that are available only with a schema-aware XSLT processor.

Additional schema components (type definitions, element declarations, and attribute declarations) may be added to the in-scope schema
components by means of the xsl:import-schema declaration in a stylesheet.

The xsl:import-schema declaration may reference an external schema document by means of a URI, or it may contain an inline xs:schema
element.

It is only necessary to import a schema explicitly if one or more of its schema components are referenced explicitly by name in the
stylesheet; it is not necessary to import a schema merely because the stylesheet is used to process a source document that has been
assessed against that schema. It is possible to make use of the information resulting from schema assessment (for example, the fact that a
particular attribute holds a date) even if no schema has been imported by the stylesheet.

Further, importing a schema does not of itself say anything about the type of the source document that the stylesheet is expected to process.
The imported type definitions can be used for temporary nodes or for nodes on a result tree just as much as for nodes in source documents.
It is possible to make assertions about the type of an input document by means of tests within the stylesheet. For example:

Example: Asserting the Required Type of the Source Document
<xsl:template match="document-node(schema-element(my:invoice))" priority="2">
. . .
</xsl:template>

<xsl:template match="document-node()" priority="1">
 <xsl:message terminate="yes">Source document is not an invoice</xsl:message>
</xsl:template>

This example will cause the transformation to fail with an error message unless the document element of the source document is valid
against the top-level element declaration my:invoice, and has been annotated as such.

It is possible that a source document may contain nodes whose type annotation is not one of the types imported by the stylesheet. This
creates a potential problem because in the case of an expression such as data(.) instance of xs:integer the system needs to know
whether the type named in the type annotation of the context node is derived by restriction from the type xs:integer. This information is not
explicitly available in an XDM tree, as defined in [Data Model]. The implementation may choose one of several strategies for dealing with this
situation:

1. The processor may signal a non-recoverable dynamic error if a source document is found to contain a type annotation that is not
known to the processor.

Page 9 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

2. The processor may maintain additional metadata, beyond that described in [Data Model], that allows the source document to be
processed as if all the necessary schema information had been imported using xsl:import-schema. Such metadata might be held in
the data structure representing the source document itself, or it might be held in a system catalog or repository.

3. The processor may be configured to use a fixed set of schemas, which are automatically used to validate all source documents before
they can be supplied as input to a transformation. In this case it is impossible for a source document to have a type annotation that the
processor is not aware of.

4. The processor may be configured to treat the source document as if no schema processing had been performed, that is, effectively to
strip all type annotations from elements and attributes on input, marking them instead as having type xs:untyped and
xs:untypedAtomic respectively.

Where a stylesheet author chooses to make assertions about the types of nodes or of variables and parameters, it is possible for an XSLT
processor to perform static analysis of the stylesheet (that is, analysis in the absence of any source document). Such analysis MAY reveal
errors that would otherwise not be discovered until the transformation is actually executed. An XSLT processor is not REQUIRED to perform
such static type-checking. Under some circumstances (see 2.9 Error Handling) type errors that are detected early MAY be reported as static
errors. In addition an implementation MAY report any condition found during static analysis as a warning, provided that this does not prevent
the stylesheet being evaluated as described by this specification.

A stylesheet can also control the type annotations of nodes that it constructs in a final result tree, or in temporary trees. This can be done in
a number of ways.

It is possible to request explicit validation of a complete document, that is, a tree rooted at a document node. This applies both to
temporary trees constructed using the xsl:document (or xsl:copy) instruction and also to final result trees constructed using
xsl:result-document. Validation is either strict or lax, as described in [XML Schema Part 1]. If validation of a result tree fails (strictly
speaking, if the outcome of the validity assessment is invalid), then the transformation fails, but in all other cases, the element and
attribute nodes of the tree will be annotated with the names of the types to which these nodes conform. These type annotations will be
discarded if the result tree is serialized as an XML document, but they remain available when the result tree is passed to an application
(perhaps another stylesheet) for further processing.
It is also possible to validate individual element and attribute nodes as they are constructed. This is done using the type and
validation attributes of the xsl:element, xsl:attribute, xsl:copy, and xsl:copy-of instructions, or the xsl:type and xsl:validation
attributes of a literal result element.
When elements, attributes, or document nodes are copied, either explicitly using the xsl:copy or xsl:copy-of instructions, or implicitly
when nodes in a sequence are attached to a new parent node, the options validation="strip" and validation="preserve" are
available, to control whether existing type annotations are to be retained or not.

When nodes in a temporary tree are validated, type information is available for use by operations carried out on the temporary tree, in the
same way as for a source document that has undergone schema assessment.

For details of how validation of element and attribute nodes works, see 19.2 Validation.

2.9 Error Handling

[DEFINITION: An error that is detected by examining a stylesheet before execution starts (that is, before the source document and values of
stylesheet parameters are available) is referred to as a static error.]

Errors classified in this specification as static errors MUST be signaled by all implementations: that is, the processor MUST indicate that the
error is present. A static error MUST be signaled even if it occurs in a part of the stylesheet that is never evaluated. Static errors are never
recoverable. After signaling a static error, a processor MAY continue for the purpose of signaling additional errors, but it MUST eventually
terminate abnormally without producing any final result tree.

There is an exception to this rule when the stylesheet specifies forwards-compatible behavior (see 3.9 Forwards-Compatible Processing).

Generally, errors in the structure of the stylesheet, or in the syntax of XPath expressions contained in the stylesheet, are classified as static
errors. Where this specification states that an element in the stylesheet MUST or MUST NOT appear in a certain position, or that it MUST or
MUST NOT have a particular attribute, or that an attribute MUST or MUST NOT have a value satisfying specified conditions, then any
contravention of this rule is a static error unless otherwise specified.

[DEFINITION: An error that is not detected until a source document is being transformed is referred to as a dynamic error.]

[DEFINITION: Some dynamic errors are classed as recoverable errors. When a recoverable error occurs, this specification allows the
processor either to signal the error (by reporting the error condition and terminating execution) or to take a defined recovery action and
continue processing.] It is implementation-defined whether the error is signaled or the recovery action is taken.

[DEFINITION: If an implementation chooses to recover from a recoverable dynamic error, it MUST take the optional recovery action defined
for that error condition in this specification.]

When the implementation makes the choice between signaling a dynamic error or recovering, it is not restricted in how it makes the choice;
for example, it MAY provide options that can be set by the user. When an implementation chooses to recover from a dynamic error, it MAY
also take other action, such as logging a warning message.

[DEFINITION: A dynamic error that is not recoverable is referred to as a non-recoverable dynamic error. When a non-recoverable dynamic
error occurs, the processor MUST signal the error, and the transformation fails.]

Because different implementations may optimize execution of the stylesheet in different ways, the detection of dynamic errors is to some
degree implementation-dependent. In cases where an implementation is able to produce the final result trees without evaluating a particular
construct, the implementation is never REQUIRED to evaluate that construct solely in order to determine whether doing so causes a dynamic
error. For example, if a variable is declared but never referenced, an implementation MAY choose whether or not to evaluate the variable
declaration, which means that if evaluating the variable declaration causes a dynamic error, some implementations will signal this error and
others will not.

There are some cases where this specification requires that a construct MUST NOT be evaluated: for example, the content of an xsl:if
instruction MUST NOT be evaluated if the test condition is false. This means that an implementation MUST NOT signal any dynamic errors that
would arise if the construct were evaluated.

An implementation MAY signal a dynamic error before any source document is available, but only if it can determine that the error would be

Page 10 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

signaled for every possible source document and every possible set of parameter values. For example, some circularity errors fall into this
category: see 9.8 Circular Definitions.

The XPath specification states (see Section 2.3.1 Kinds of ErrorsXP) that if any expression (at any level) can be evaluated during the analysis
phase (because all its explicit operands are known and it has no dependencies on the dynamic context), then any error in performing this
evaluation MAY be reported as a static error. For XPath expressions used in an XSLT stylesheet, however, any such errors MUST NOT be
reported as static errors in the stylesheet unless they would occur in every possible evaluation of that stylesheet; instead, they must be
signaled as dynamic errors, and signaled only if the XPath expression is actually evaluated.

Example: Errors in Constant Subexpressions

An XPath processor may report statically that the expression 1 div 0 fails with a "divide by zero" error. But suppose this XPath
expression occurs in an XSLT construct such as:

<xsl:choose>
 <xsl:when test="system-property('xsl:version') = '1.0'">
 <xsl:value-of select="1 div 0"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="xs:double('INF')"/>
 </xsl:otherwise>
</xsl:choose>

Then the XSLT processor must not report an error, because the relevant XPath construct appears in a context where it will never be
executed by an XSLT 2.0 processor. (An XSLT 1.0 processor will execute this code successfully, returning positive infinity, because it
uses double arithmetic rather than decimal arithmetic.)

[DEFINITION: Certain errors are classified as type errors. A type error occurs when the value supplied as input to an operation is of the
wrong type for that operation, for example when an integer is supplied to an operation that expects a node.] If a type error occurs in an
instruction that is actually evaluated, then it MUST be signaled in the same way as a non-recoverable dynamic error. Alternatively, an
implementation MAY signal a type error during the analysis phase in the same way as a static error, even if it occurs in part of the stylesheet
that is never evaluated, provided it can establish that execution of a particular construct would never succeed.

It is implementation-defined whether type errors are signaled statically.

Example: A Type Error

The following construct contains a type error, because 42 is not allowed as an operand of the xsl:apply-templates instruction. An
implementation MAY optionally signal this as a static error, even though the offending instruction will never be evaluated, and the type
error would therefore never be signaled as a dynamic error.

<xsl:if test="false()">
 <xsl:apply-templates select="42"/>
</xsl:if>

On the other hand, in the following example it is not possible to determine statically whether the operand of xsl:apply-templates will
have a suitable dynamic type. An implementation MAY produce a warning in such cases, but it MUST NOT treat it as an error.

<xsl:template match="para">
 <xsl:param name="p" as="item()"/>
 <xsl:apply-templates select="$p"/>
</xsl:template>

If more than one error arises, an implementation is not REQUIRED to signal any errors other than the first one that it detects. It is
implementation-dependent which of the several errors is signaled. This applies both to static errors and to dynamic errors. An
implementation is allowed to signal more than one error, but if any errors have been signaled, it MUST NOT finish as if the transformation
were successful.

When a transformation signals one or more dynamic errors, the final state of any persistent resources updated by the transformation is
implementation-dependent. Implementations are not REQUIRED to restore such resources to their initial state. In particular, where a
transformation produces multiple result documents, it is possible that one or more serialized result documents MAY be written successfully
before the transformation terminates, but the application cannot rely on this behavior.

Everything said above about error handling applies equally to errors in evaluating XSLT instructions, and errors in evaluating XPath
expressions. Static errors and dynamic errors may occur in both cases.

[DEFINITION: If a transformation has successfully produced a final result tree, it is still possible that errors may occur in serializing the result
tree. For example, it may be impossible to serialize the result tree using the encoding selected by the user. Such an error is referred to as a
serialization error.] If the processor performs serialization, then it MUST do so as specified in 20 Serialization, and in particular it MUST
signal any serialization errors that occur.

Errors are identified by a QName. For errors defined in this specification, the namespace of the QName is always
http://www.w3.org/2005/xqt-errors (and is therefore not given explicitly), while the local part is an 8-character code in the form
PPSSNNNN. Here PP is always XT (meaning XSLT), and SS is one of SE (static error), DE (dynamic error), RE (recoverable dynamic error), or
TE (type error). Note that the allocation of an error to one of these categories is purely for convenience and carries no normative implications
about the way the error is handled. Many errors, for example, can be reported either dynamically or statically.

These error codes are used to label error conditions in this specification, and are summarized in E Summary of Error Conditions). They are
provided primarily for ease of reference. Implementations MAY use these codes when signaling errors, but they are not REQUIRED to do so.
An API specification, however, MAY require the use of error codes based on these QNames. Additional errors defined by an implementation

Page 11 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

(or by an application) MAY use QNames in an implementation-defined (or user-defined) namespace without risk of collision.

Errors defined in the [XPath 2.0] and [Functions and Operators] specifications use QNames with a similar structure, in the same namespace.
When errors occur in processing XPath expressions, an XSLT processor SHOULD use the original error code reported by the XPath
processor, unless a more specific XSLT error code is available.

3 Stylesheet Structure

[DEFINITION: A stylesheet consists of one or more stylesheet modules, each one forming all or part of an XML document.]

Note:

A stylesheet module is represented by an XDM element node (see [Data Model]). In the case of a standard stylesheet module, this will
be an xsl:stylesheet or xsl:transform element. In the case of a simplified stylesheet module, it can be any element (not in the XSLT
namespace) that has an xsl:version attribute.

Although stylesheet modules will commonly be maintained in the form of documents conforming to XML 1.0 or XML 1.1, this
specification does not mandate such a representation. As with source trees, the way in which stylesheet modules are constructed, from
textual XML or otherwise, is outside the scope of this specification.

A stylesheet module is either a standard stylesheet module or a simplified stylesheet module:

[DEFINITION: A standard stylesheet module is a tree, or part of a tree, consisting of an xsl:stylesheet or xsl:transform element
(see 3.6 Stylesheet Element) together with its descendant nodes and associated attributes and namespaces.]
[DEFINITION: A simplified stylesheet module is a tree, or part of a tree, consisting of a literal result element together with its
descendant nodes and associated attributes and namespaces. This element is not itself in the XSLT namespace, but it MUST have an
xsl:version attribute, which implies that it MUST have a namespace node that declares a binding for the XSLT namespace. For further
details see 3.7 Simplified Stylesheet Modules.]

Both forms of stylesheet module (standard and simplified) can exist either as an entire XML document, or embedded as part of another XML
document, typically but not necessarily a source document that is to be processed using the stylesheet.

[DEFINITION: A standalone stylesheet module is a stylesheet module that comprises the whole of an XML document.]

[DEFINITION: An embedded stylesheet module is a stylesheet module that is embedded within another XML document, typically the source
document that is being transformed.] (see 3.11 Embedded Stylesheet Modules).

There are thus four kinds of stylesheet module:

standalone standard stylesheet modules
standalone simplified stylesheet modules
embedded standard stylesheet modules
embedded simplified stylesheet modules

3.1 XSLT Namespace

[DEFINITION: The XSLT namespace has the URI http://www.w3.org/1999/XSL/Transform. It is used to identify elements, attributes, and
other names that have a special meaning defined in this specification.]

Note:

The 1999 in the URI indicates the year in which the URI was allocated by the W3C. It does not indicate the version of XSLT being used,
which is specified by attributes (see 3.6 Stylesheet Element and 3.7 Simplified Stylesheet Modules).

XSLT processors MUST use the XML namespaces mechanism [Namespaces in XML 1.0] to recognize elements and attributes from this
namespace. Elements from the XSLT namespace are recognized only in the stylesheet and not in the source document. The complete list of
XSLT-defined elements is specified in D Element Syntax Summary. Implementations MUST NOT extend the XSLT namespace with additional
elements or attributes. Instead, any extension MUST be in a separate namespace. Any namespace that is used for additional instruction
elements MUST be identified by means of the extension instruction mechanism specified in 18.2 Extension Instructions.

This specification uses a prefix of xsl: for referring to elements in the XSLT namespace. However, XSLT stylesheets are free to use any
prefix, provided that there is a namespace declaration that binds the prefix to the URI of the XSLT namespace.

Note:

Throughout this specification, an element or attribute that is in no namespace, or an expanded-QName whose namespace part is an
empty sequence, is referred to as having a null namespace URI.

Note:

The conventions used for the names of XSLT elements, attributes and functions are that names are all lower-case, use hyphens to
separate words, and use abbreviations only if they already appear in the syntax of a related language such as XML or HTML. Names of
types defined in XML Schema however, are regarded as single words and are capitalized exactly as in XML Schema. This sometimes
leads to composite function names such as current-dateTimeFO.

3.2 Reserved Namespaces

[DEFINITION: The XSLT namespace, together with certain other namespaces recognized by an XSLT processor, are classified as reserved
namespaces and MUST be used only as specified in this and related specifications.] The reserved namespaces are those listed below.

The XSLT namespace, described in 3.1 XSLT Namespace, is reserved.
[DEFINITION: The standard function namespace http://www.w3.org/2005/xpath-functions is used for functions in the function
library defined in [Functions and Operators] and standard functions defined in this specification.]

Page 12 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

[DEFINITION: The XML namespace, defined in [Namespaces in XML 1.0] as http://www.w3.org/XML/1998/namespace, is used for
attributes such as xml:lang, xml:space, and xml:id.]
[DEFINITION: The schema namespace http://www.w3.org/2001/XMLSchema is used as defined in [XML Schema Part 1]]. In a
stylesheet this namespace may be used to refer to built-in schema datatypes and to the constructor functions associated with those
datatypes.
[DEFINITION: The schema instance namespace http://www.w3.org/2001/XMLSchema-instance is used as defined in [XML Schema
Part 1]]. Attributes in this namespace, if they appear in a stylesheet, are treated by the XSLT processor in the same way as any other
attributes.

Reserved namespaces may be used without restriction to refer to the names of elements and attributes in source documents and result
documents. As far as the XSLT processor is concerned, reserved namespaces other than the XSLT namespace may be used without
restriction in the names of literal result elements and user-defined data elements, and in the names of attributes of literal result elements or
of XSLT elements: but other processors MAY impose restrictions or attach special meaning to them. Reserved namespaces MUST NOT be
used, however, in the names of stylesheet-defined objects such as variables and stylesheet functions.

Note:

With the exception of the XML namespace, any of the above namespaces that are used in a stylesheet must be explicitly declared with
a namespace declaration. Although conventional prefixes are used for these namespaces in this specification, any prefix may be used
in a user stylesheet.

[ERR XTSE0080] It is a static error to use a reserved namespace in the name of a named template, a mode, an attribute set, a key, a decimal-
format, a variable or parameter, a stylesheet function, a named output definition, or a character map.

3.3 Extension Attributes

[DEFINITION: An element from the XSLT namespace may have any attribute not from the XSLT namespace, provided that the expanded-
QName (see [XPath 2.0]) of the attribute has a non-null namespace URI. These attributes are referred to as extension attributes.] The
presence of an extension attribute MUST NOT cause the final result trees produced by the transformation to be different from the result trees
that a conformant XSLT 2.0 processor might produce. They MUST NOT cause the processor to fail to signal an error that a conformant
processor is required to signal. This means that an extension attribute MUST NOT change the effect of any instruction except to the extent
that the effect is implementation-defined or implementation-dependent.

Furthermore, if serialization is performed using one of the serialization methods xml, xhtml, html, or text described in 20 Serialization, the
presence of an extension attribute must not cause the serializer to behave in a way that is inconsistent with the mandatory provisions of that
specification.

Note:

Extension attributes may be used to modify the behavior of extension functions and extension instructions. They may be used to select
processing options in cases where the specification leaves the behavior implementation-defined or implementation-dependent. They
may also be used for optimization hints, for diagnostics, or for documentation.

Extension attributes MAY also be used to influence the behavior of the serialization methods xml, xhtml, html, or text, to the extent that
the behavior of the serialization method is implementation-defined or implementation-dependent. For example, an extension attribute
might be used to define the amount of indentation to be used when indent="yes" is specified. If a serialization method other than one of
these four is requested (using a prefixed QName in the method parameter) then extension attributes may influence its behavior in
arbitrary ways. Extension attributes MUST NOT be used to cause the four standard serialization methods to behave in a non-conformant
way, for example by failing to report serialization errors that a serializer is REQUIRED to report. An implementation that wishes to provide
such options must create a new serialization method for the purpose.

An implementation that does not recognize the name of an extension attribute, or that does not recognize its value, MUST perform the
transformation as if the extension attribute were not present. As always, it is permissible to produce warning messages.

The namespace used for an extension attribute will be copied to the result tree in the normal way if it is in scope for a literal result
element. This can be prevented using the [xsl:]exclude-result-prefixes attribute.

Example: An Extension Attribute for xsl:message

The following code might be used to indicate to a particular implementation that the xsl:message instruction is to ask the user for
confirmation before continuing with the transformation:

<xsl:message
 abc:pause="yes"
 xmlns:abc="http://vendor.example.com/xslt/extensions">Phase 1 complete</xsl:message>

Implementations that do not recognize the namespace http://vendor.example.com/xslt/extensions will simply ignore the extra
attribute, and evaluate the xsl:message instruction in the normal way.

[ERR XTSE0090] It is a static error for an element from the XSLT namespace to have an attribute whose namespace is either null (that is, an
attribute with an unprefixed name) or the XSLT namespace, other than attributes defined for the element in this document.

3.4 XSLT Media Type

The media type application/xslt+xml will be registered for XSLT stylesheet modules.

The proposed definition of the media type is at B The XSLT Media Type

This media type SHOULD be used for an XML document containing a standard stylesheet module at its top level, and it MAY also be used for
a simplified stylesheet module. It SHOULD NOT be used for an XML document containing an embedded stylesheet module.

Page 13 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

3.5 Standard Attributes

[DEFINITION: There are a number of standard attributes that may appear on any XSLT element: specifically version, exclude-result-
prefixes, extension-element-prefixes, xpath-default-namespace, default-collation, and use-when.]

These attributes may also appear on a literal result element, but in this case, to distinguish them from user-defined attributes, the names of
the attributes are in the XSLT namespace. They are thus typically written as xsl:version, xsl:exclude-result-prefixes, xsl:extension-
element-prefixes, xsl:xpath-default-namespace, xsl:default-collation, or xsl:use-when.

It is RECOMMENDED that all these attributes should also be permitted on extension instructions, but this is at the discretion of the implementer
of each extension instruction. They MAY also be permitted on user-defined data elements, though they will only have any useful effect in the
case of data elements that are designed to behave like XSLT declarations or instructions.

In the following descriptions, these attributes are referred to generically as [xsl:]version, and so on.

These attributes all affect the element they appear on, together with any elements and attributes that have that element as an ancestor. The
two forms with and without the XSLT namespace have the same effect; the XSLT namespace is used for the attribute if and only if its parent
element is not in the XSLT namespace.

In the case of [xsl:]version, [xsl:]xpath-default-namespace, and [xsl:]default-collation, the value can be overridden by a different
value for the same attribute appearing on a descendant element. The effective value of the attribute for a particular stylesheet element is
determined by the innermost ancestor-or-self element on which the attribute appears.

In an embedded stylesheet module, standard attributes appearing on ancestors of the outermost element of the stylesheet module have no
effect.

In the case of [xsl:]exclude-result-prefixes and [xsl:]extension-element-prefixes the values are cumulative. For these attributes, the
value is given as a whitespace-separated list of namespace prefixes, and the effective value for an element is the combined set of
namespace URIs designated by the prefixes that appear in this attribute for that element and any of its ancestor elements. Again, the two
forms with and without the XSLT namespace are equivalent.

The effect of the [xsl:]use-when attribute is described in 3.12 Conditional Element Inclusion.

Because these attributes may appear on any XSLT element, they are not listed in the syntax summary of each individual element. Instead
they are listed and described in the entry for the xsl:stylesheet and xsl:transform elements only. This reflects the fact that these attributes
are often used on the xsl:stylesheet element only, in which case they apply to the entire stylesheet module.

Note that the effect of these attributes does not extend to stylesheet modules referenced by xsl:include or xsl:import declarations.

For the detailed effect of each attribute, see the following sections:

[xsl:]version

see 3.8 Backwards-Compatible Processing and 3.9 Forwards-Compatible Processing

[xsl:]xpath-default-namespace

see 5.2 Unprefixed QNames in Expressions and Patterns

[xsl:]exclude-result-prefixes

see 11.1.3 Namespace Nodes for Literal Result Elements

[xsl:]extension-element-prefixes

see 18.2 Extension Instructions

[xsl:]use-when

see 3.12 Conditional Element Inclusion

[xsl:]default-collation

see 3.6.1 The default-collation attribute

3.6 Stylesheet Element

<xsl:stylesheet
 id? = id
 extension-element-prefixes? = tokens
 exclude-result-prefixes? = tokens
 version = number
 xpath-default-namespace? = uri
 default-validation? = "preserve" | "strip"
 default-collation? = uri-list
 input-type-annotations? = "preserve" | "strip" | "unspecified">
 <!-- Content: (xsl:import*, other-declarations) -->
</xsl:stylesheet>

<xsl:transform
 id? = id
 extension-element-prefixes? = tokens
 exclude-result-prefixes? = tokens
 version = number
 xpath-default-namespace? = uri
 default-validation? = "preserve" | "strip"
 default-collation? = uri-list

Page 14 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 input-type-annotations? = "preserve" | "strip" | "unspecified">
 <!-- Content: (xsl:import*, other-declarations) -->
</xsl:transform>

A stylesheet module is represented by an xsl:stylesheet element in an XML document. xsl:transform is allowed as a synonym for
xsl:stylesheet; everything this specification says about the xsl:stylesheet element applies equally to xsl:transform.

An xsl:stylesheet element MUST have a version attribute, indicating the version of XSLT that the stylesheet module requires.

[ERR XTSE0110] The value of the version attribute MUST be a number: specifically, it MUST be a a valid instance of the type xs:decimal as
defined in [XML Schema Part 2]. For this version of XSLT, the value SHOULD normally be 2.0. A value of 1.0 indicates that the stylesheet
module was written with the intention that it SHOULD be processed using an XSLT 1.0 processor.

If a stylesheet that specifies [xsl:]version="1.0" in the outermost element of the principal stylesheet module (that is, version="1.0" in the
case of a standard stylesheet module, or xsl:version="1.0" in the case of a simplified stylesheet module) is submitted to an XSLT 2.0
processor, the processor SHOULD output a warning advising the user of possible incompatibilities, unless the user has requested otherwise.
The processor MUST then process the stylesheet using the rules for backwards-compatible behavior. These rules require that if the processor
does not support backwards-compatible behavior, it MUST signal an error and MUST NOT execute the transformation.

When the value of the version attribute is greater than 2.0, forwards-compatible behavior is enabled (see 3.9 Forwards-Compatible
Processing).

Note:

XSLT 1.0 allowed the [xsl:]version attribute to take any numeric value, and specified that if the value was not equal to 1.0, the
stylesheet would be executed in forwards compatible mode. XSLT 2.0 continues to allow the attribute to take any unsigned decimal
value. A software product that includes both an XSLT 1.0 processor and an XSLT 2.0 processor (or that can execute as either) may use
the [xsl:]version attribute to decide which processor to invoke; such behavior is outside the scope of this specification. When the
stylesheet is executed with an XSLT 2.0 processor, the value 1.0 is taken to indicate that the stylesheet module was written with XSLT
1.0 in mind: if this value appears on the outermost element of the principal stylesheet module then an XSLT 2.0 processor will either
reject the stylesheet or execute it in backwards compatible mode, as described above. Setting version="2.0" indicates that the
stylesheet is to be executed with neither backwards nor forwards compatible behavior enabled. Any other value less than 2.0 enables
backwards compatible behavior, while any value greater than 2.0 enables forwards compatible behavior.

When developing a stylesheet that is designed to execute under either XSLT 1.0 or XSLT 2.0, the recommended practice is to create
two alternative stylesheet modules, one specifying version="1.0", and the other specifying version="2.0"; these modules can use
xsl:include or xsl:import to incorporate the common code. When running under an XSLT 1.0 processor, the version="1.0" module
can be selected as the principal stylesheet module; when running under an XSLT 2.0 processor, the version="2.0" module can be
selected as the principal stylesheet module. Stylesheet modules that are included or imported should specify version="2.0" if they make
use of XSLT 2.0 facilities, and version="1.0" otherwise.

The effect of the input-type-annotations attribute is described in 4.3 Stripping Type Annotations from a Source Tree.

The default-validation attribute defines the default value of the validation attribute of all xsl:document, xsl:element, xsl:attribute,
xsl:copy, xsl:copy-of, and xsl:result-document instructions, and of the xsl:validation attribute of all literal result elements. It also
determines the validation applied to the implicit final result tree created in the absence of an xsl:result-document instruction. This default
applies within the stylesheet module: it does not extend to included or imported stylesheet modules. If the attribute is omitted, the default is
strip. The permitted values are preserve and strip. For details of the effect of this attribute, see 19.2 Validation.

[ERR XTSE0120] An xsl:stylesheet element MUST NOT have any text node children. (This rule applies after stripping of whitespace text nodes
as described in 4.2 Stripping Whitespace from the Stylesheet.)

[DEFINITION: An element occurring as a child of an xsl:stylesheet element is called a top-level element.]

[DEFINITION: Top-level elements fall into two categories: declarations, and user-defined data elements. Top-level elements whose names are
in the XSLT namespace are declarations. Top-level elements in any other namespace are user-defined data elements (see 3.6.2 User-
defined Data Elements)].

The declaration elements permitted in the xsl:stylesheet element are:

xsl:import
xsl:include
xsl:attribute-set
xsl:character-map
xsl:decimal-format
xsl:function
xsl:import-schema
xsl:key
xsl:namespace-alias
xsl:output
xsl:param
xsl:preserve-space
xsl:strip-space
xsl:template
xsl:variable

Note that the xsl:variable and xsl:param elements can act either as declarations or as instructions. A global variable or parameter is
defined using a declaration; a local variable or parameter using an instruction.

If there are xsl:import elements, these MUST come before any other elements. Apart from this, the child elements of the xsl:stylesheet
element may appear in any order. The ordering of these elements does not affect the results of the transformation unless there are conflicting
declarations (for example, two template rules with the same priority that match the same node). In general, it is an error for a stylesheet to
contain such conflicting declarations, but in some cases the processor is allowed to recover from the error by choosing the declaration that
appears last in the stylesheet.

3.6.1 The default-collation attribute

Page 15 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The default-collation attribute is a standard attribute that may appear on any element in the XSLT namespace, or (as xsl:default-
collation) on a literal result element.

The attribute is used to specify the default collation used by all XPath expressions appearing in the attributes of this element, or attributes of
descendant elements, unless overridden by another default-collation attribute on an inner element. It also determines the collation used
by certain XSLT constructs (such as xsl:key and xsl:for-each-group) within its scope.

The value of the attribute is a whitespace-separated list of collation URIs. If any of these URIs is a relative URI, then it is resolved relative to
the base URI of the attribute's parent element. If the implementation recognizes one or more of the resulting absolute collation URIs, then it
uses the first one that it recognizes as the default collation.

[ERR XTSE0125] It is a static error if the value of an [xsl:]default-collation attribute, after resolving against the base URI, contains no URI
that the implementation recognizes as a collation URI.

Note:

The reason the attribute allows a list of collation URIs is that collation URIs will often be meaningful only to one particular XSLT
implementation. Stylesheets designed to run with several different implementations can therefore specify several different collation
URIs, one for use with each. To avoid the above error condition, it is possible to specify the Unicode Codepoint Collation as the last
collation URI in the list.

The [xsl:]default-collation attribute does not affect the collation used by xsl:sort.

3.6.2 User-defined Data Elements

[DEFINITION: In addition to declarations, the xsl:stylesheet element may contain any element not from the XSLT namespace, provided that
the expanded-QName of the element has a non-null namespace URI. Such elements are referred to as user-defined data elements.]

[ERR XTSE0130] It is a static error if the xsl:stylesheet element has a child element whose name has a null namespace URI.

An implementation MAY attach an implementation-defined meaning to user-defined data elements that appear in particular namespaces. The
set of namespaces that are recognized for such data elements is implementation-defined. The presence of a user-defined data element
MUST NOT change the behavior of XSLT elements and functions defined in this document; for example, it is not permitted for a user-defined
data element to specify that xsl:apply-templates should use different rules to resolve conflicts. The constraints on what user-defined data
elements can and cannot do are exactly the same as the constraints on extension attributes, described in 3.3 Extension Attributes. Thus, an
implementation is always free to ignore user-defined data elements, and MUST ignore such data elements without giving an error if it does
not recognize the namespace URI.

User-defined data elements can provide, for example,

information used by extension instructions or extension functions (see 18 Extensibility and Fallback),
information about what to do with any final result tree,
information about how to construct source trees,
optimization hints for the processor,
metadata about the stylesheet,
structured documentation for the stylesheet.

A user-defined data element MUST NOT precede an xsl:import element within a stylesheet module [see ERR XTSE0200]

3.7 Simplified Stylesheet Modules

A simplified syntax is allowed for a stylesheet module that defines only a single template rule for the document node. The stylesheet module
may consist of just a literal result element (see 11.1 Literal Result Elements) together with its contents. The literal result element must have
an xsl:version attribute (and it must therefore also declare the XSLT namespace). Such a stylesheet module is equivalent to a standard
stylesheet module whose xsl:stylesheet element contains a template rule containing the literal result element, minus its xsl:version
attribute; the template rule has a match pattern of /.

Example: A Simplified Stylesheet

For example:

<html xsl:version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Expense Report Summary</title>
 </head>
 <body>
 <p>Total Amount: <xsl:value-of select="expense-report/total"/></p>
 </body>
</html>

has the same meaning as

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml">
<xsl:template match="/">
<html>
 <head>
 <title>Expense Report Summary</title>
 </head>
 <body>
 <p>Total Amount: <xsl:value-of select="expense-report/total"/></p>

Page 16 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 </body>
</html>
</xsl:template>
</xsl:stylesheet>

Note that it is not possible, using a simplified stylesheet, to request that the serialized output contains a DOCTYPE declaration. This can
only be done by using a standard stylesheet module, and using the xsl:output element.

More formally, a simplified stylesheet module is equivalent to the standard stylesheet module that would be generated by applying the
following transformation to the simplified stylesheet module, invoking the transformation by calling the named template expand, with the
containing literal result element as the context node:

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template name="expand">
 <xsl:element name="xsl:stylesheet">
 <xsl:attribute name="version" select="@xsl:version"/>
 <xsl:element name="xsl:template">
 <xsl:attribute name="match">/</xsl:attribute>
 <xsl:copy-of select="."/>
 </xsl:element>
 </xsl:element>
</xsl:template>

</xsl:stylesheet>

[ERR XTSE0150] A literal result element that is used as the outermost element of a simplified stylesheet module MUST have an xsl:version
attribute. This indicates the version of XSLT that the stylesheet requires. For this version of XSLT, the value will normally be 2.0; the value
MUST be a valid instance of the type xs:decimal as defined in [XML Schema Part 2].

Other literal result elements may also have an xsl:version attribute. When the xsl:version attribute is numerically less than 2.0,
backwards-compatible processing behavior is enabled (see 3.8 Backwards-Compatible Processing). When the xsl:version attribute is
numerically greater than 2.0, forwards-compatible behavior is enabled (see 3.9 Forwards-Compatible Processing).

The allowed content of a literal result element when used as a simplified stylesheet is the same as when it occurs within a sequence
constructor. Thus, a literal result element used as the document element of a simplified stylesheet cannot contain declarations. Simplified
stylesheets therefore cannot use global variables, stylesheet parameters, stylesheet functions, keys, attribute-sets, or output definitions. In
turn this means that the only useful way to initiate the transformation is to supply a document node as the initial context node, to be matched
by the implicit match="/" template rule using the default mode.

3.8 Backwards-Compatible Processing

[DEFINITION: An element enables backwards-compatible behavior for itself, its attributes, its descendants and their attributes if it has an
[xsl:]version attribute (see 3.5 Standard Attributes) whose value is less than 2.0.]

An element that has an [xsl:]version attribute whose value is greater than or equal to 2.0 disables backwards-compatible behavior for
itself, its attributes, its descendants and their attributes. The compatibility behavior established by an element overrides any compatibility
behavior established by an ancestor element.

If an attribute containing an XPath expression is processed with backwards-compatible behavior, then the expression is evaluated with XPath
1.0 compatibility mode set to true. For details of this mode, see Section 2.1.1 Static ContextXP. Furthermore, in such an expression any
function call for which no implementation is available (unless it uses the standard function namespace) is bound to a fallback error function
whose effect when evaluated is to raise a dynamic error [see ERR XTDE1425] . The effect is that with backwards-compatible behavior enabled,
calls on extension functions that are not available in a particular implementation do not cause an error unless the function call is actually
evaluated. For further details, see 18.1 Extension Functions.

Note:

This might appear to contradict the specification of XPath 2.0, which states that a static error [XPST0017] is raised when an expression
contains a call to a function that is not present (with matching name and arity) in the static context. This apparent contradiction is
resolved by specifying that the XSLT processor constructs a static context for the expression in which every possible function name and
arity (other than names in the standard function namespace) is present; when no other implementation of the function is available, the
function call is bound to a fallback error function whose run-time effect is to raise a dynamic error.

Certain XSLT constructs also produce different results when backwards-compatible behavior is enabled. This is described separately for
each such construct.

These rules do not apply to the xsl:output element, whose version attribute has an entirely different purpose: it is used to define the version
of the output method to be used for serialization.

Note:

By making use of backwards-compatible behavior, it is possible to write the stylesheet in a way that ensures that its results when
processed with an XSLT 2.0 processor are identical to the effects of processing the same stylesheet using an XSLT 1.0 processor. The
differences are described (non-normatively) in J.1 Incompatible Changes. To assist with transition, some parts of a stylesheet may be
processed with backwards compatible behavior enabled, and other parts with this behavior disabled. All data values manipulated by an
XSLT 2.0 processor are defined by the XDM data model, whether or not the relevant expressions use backwards compatible behavior.
Because the same data model is used in both cases, expressions are fully composable. The result of evaluating instructions or
expressions with backwards compatible behavior is fully defined in the XSLT 2.0 and XPath 2.0 specifications, it is not defined by
reference to the XSLT 1.0 and XPath 1.0 specifications.

It is implementation-defined whether a particular XSLT 2.0 implementation supports backwards-compatible behavior.

Page 17 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

[ERR XTDE0160] If an implementation does not support backwards-compatible behavior, then it is a non-recoverable dynamic error if any
element is evaluated that enables backwards-compatible behavior.

Note:

To write a stylesheet that works with both XSLT 1.0 and 2.0 processors, while making selective use of XSLT 2.0 facilities, it is necessary
to understand both the rules for backwards-compatible behavior in XSLT 2.0, and the rules for forwards-compatible behavior in XSLT
1.0. If the xsl:stylesheet element specifies version="2.0", then an XSLT 1.0 processor will ignore XSLT 2.0 declarations that were not
defined in XSLT 1.0, for example xsl:function and xsl:import-schema. If any new XSLT 2.0 instructions are used (for example
xsl:analyze-string or xsl:namespace), or if new XPath 2.0 features are used (for example, new functions, or syntax such as
conditional expressions, or calls to a function defined using xsl:function), then the stylesheet must provide fallback behavior that relies
on XSLT 1.0 and XPath 1.0 facilities only. The fallback behavior can be invoked by using the xsl:fallback instruction, or by testing the
results of the function-available or element-available functions, or by testing the value of the xsl:version property returned by the
system-property function.

3.9 Forwards-Compatible Processing

The intent of forwards-compatible behavior is to make it possible to write a stylesheet that takes advantage of features introduced in some
version of XSLT subsequent to XSLT 2.0, while retaining the ability to execute the stylesheet with an XSLT 2.0 processor using appropriate
fallback behavior.

It is always possible to write conditional code to run under different XSLT versions by using the use-when feature described in 3.12
Conditional Element Inclusion. The rules for forwards-compatible behavior supplement this mechanism in two ways:

certain constructs in the stylesheet that mean nothing to an XSLT 2.0 processor are ignored, rather than being treated as errors.
explicit fallback behavior can be defined for instructions defined in a future XSLT release, using the xsl:fallback instruction.

The detailed rules follow.

[DEFINITION: An element enables forwards-compatible behavior for itself, its attributes, its descendants and their attributes if it has an
[xsl:]version attribute (see 3.5 Standard Attributes) whose value is greater than 2.0.]

An element that has an [xsl:]version attribute whose value is less than or equal to 2.0 disables forwards-compatible behavior for itself, its
attributes, its descendants and their attributes. The compatibility behavior established by an element overrides any compatibility behavior
established by an ancestor element.

These rules do not apply to the version attribute of the xsl:output element, which has an entirely different purpose: it is used to define the
version of the output method to be used for serialization.

Within a section of a stylesheet where forwards-compatible behavior is enabled:

if an element in the XSLT namespace appears as a child of the xsl:stylesheet element, and XSLT 2.0 does not allow such elements
to occur as children of the xsl:stylesheet element, then the element and its content MUST be ignored.
if an element has an attribute that XSLT 2.0 does not allow the element to have, then the attribute MUST be ignored.
if an element in the XSLT namespace appears as part of a sequence constructor, and XSLT 2.0 does not allow such elements to
appear as part of a sequence constructor, then:

1. If the element has one or more xsl:fallback children, then no error is reported either statically or dynamically, and the result of
evaluating the instruction is the concatenation of the sequences formed by evaluating the sequence constructors within its
xsl:fallback children, in document order. Siblings of the xsl:fallback elements are ignored, even if they are valid XSLT 2.0
instructions.

2. If the element has no xsl:fallback children, then a static error is reported in the same way as if forwards-compatible behavior
were not enabled.

Example: Forwards Compatible Behavior

For example, an XSLT 2.0 processor will process the following stylesheet without error, although the stylesheet includes elements from
the XSLT namespace that are not defined in this specification:

<xsl:stylesheet version="17.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <xsl:exciting-new-17.0-feature>
 <xsl:fly-to-the-moon/>
 <xsl:fallback>
 <html>
 <head>
 <title>XSLT 17.0 required</title>
 </head>
 <body>
 <p>Sorry, this stylesheet requires XSLT 17.0.</p>
 </body>
 </html>
 </xsl:fallback>
 </xsl:exciting-new-17.0-feature>
 </xsl:template>
</xsl:stylesheet>

Note:

If a stylesheet depends crucially on a declaration introduced by a version of XSLT after 2.0, then the stylesheet can use an xsl:message
element with terminate="yes" (see 17 Messages) to ensure that implementations that conform to an earlier version of XSLT will not
silently ignore the declaration.

Page 18 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Example: Testing the XSLT Version

For example,

<xsl:stylesheet version="18.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:important-new-17.0-declaration/>

 <xsl:template match="/">
 <xsl:choose>
 <xsl:when test="number(system-property('xsl:version')) lt 17.0">
 <xsl:message terminate="yes">
 <xsl:text>Sorry, this stylesheet requires XSLT 17.0.</xsl:text>
 </xsl:message>
 </xsl:when>
 <xsl:otherwise>
 ...
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
 ...
</xsl:stylesheet>

3.10 Combining Stylesheet Modules

XSLT provides two mechanisms to construct a stylesheet from multiple stylesheet modules:

an inclusion mechanism that allows stylesheet modules to be combined without changing the semantics of the modules being
combined, and
an import mechanism that allows stylesheet modules to override each other.

3.10.1 Locating Stylesheet Modules

The include and import mechanisms use two declarations, xsl:include and xsl:import, which are defined in the sections that follow.

These declarations use an href attribute, whose value is a URI reference, to identify the stylesheet module to be included or imported. If the
value of this attribute is a relative URI, it is resolved as described in 5.8 URI References.

After resolving against the base URI, the way in which the URI reference is used to locate a representation of a stylesheet module, and the
way in which the stylesheet module is constructed from that representation, are implementation-defined. In particular, it is implementation-
defined which URI schemes are supported, whether fragment identifiers are supported, and what media types are supported.
Conventionally, the URI is a reference to a resource containing the stylesheet module as a source XML document, or it may include a
fragment identifier that selects an embedded stylesheet module within a source XML document; but the implementation is free to use other
mechanisms to locate the stylesheet module identified by the URI reference.

The referenced stylesheet module may be any of the four kinds of stylesheet module: that is, it may be standalone or embedded, and it may
be standard or simplified. If it is a simplified stylesheet module then it is transformed into the equivalent standard stylesheet module by
applying the transformation described in 3.7 Simplified Stylesheet Modules.

Implementations MAY choose to accept URI references containing a fragment identifier defined by reference to the XPointer specification
(see [XPointer Framework]). Note that if the implementation does not support the use of fragment identifiers in the URI reference, then it will
not be possible to include an embedded stylesheet module.

[ERR XTSE0165] It is a static error if the processor is not able to retrieve the resource identified by the URI reference, or if the resource that is
retrieved does not contain a stylesheet module conforming to this specification.

3.10.2 Stylesheet Inclusion

<!-- Category: declaration -->
<xsl:include
 href = uri-reference />

A stylesheet module may include another stylesheet module using an xsl:include declaration.

The xsl:include declaration has a REQUIRED href attribute whose value is a URI reference identifying the stylesheet module to be included.
This attribute is used as described in 3.10.1 Locating Stylesheet Modules.

[ERR XTSE0170] An xsl:include element MUST be a top-level element.

[DEFINITION: A stylesheet level is a collection of stylesheet modules connected using xsl:include declarations: specifically, two stylesheet
modules A and B are part of the same stylesheet level if one of them includes the other by means of an xsl:include declaration, or if there
is a third stylesheet module C that is in the same stylesheet level as both A and B.]

[DEFINITION: The declarations within a stylesheet level have a total ordering known as declaration order. The order of declarations within a
stylesheet level is the same as the document order that would result if each stylesheet module were inserted textually in place of the
xsl:include element that references it.] In other respects, however, the effect of xsl:include is not equivalent to the effect that would be
obtained by textual inclusion.

[ERR XTSE0180] It is a static error if a stylesheet module directly or indirectly includes itself.

Note:

It is not intrinsically an error for a stylesheet to include the same module more than once. However, doing so can cause errors because
of duplicate definitions. Such multiple inclusions are less obvious when they are indirect. For example, if stylesheet B includes

Page 19 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

stylesheet A, stylesheet C includes stylesheet A, and stylesheet D includes both stylesheet B and stylesheet C, then A will be included
indirectly by D twice. If all of B, C and D are used as independent stylesheets, then the error can be avoided by separating everything in
B other than the inclusion of A into a separate stylesheet B' and changing B to contain just inclusions of B' and A, similarly for C, and
then changing D to include A, B', C'.

3.10.3 Stylesheet Import

<!-- Category: declaration -->
<xsl:import
 href = uri-reference />

A stylesheet module may import another stylesheet module using an xsl:import declaration. Importing a stylesheet module is the same as
including it (see 3.10.2 Stylesheet Inclusion) except that template rules and other declarations in the importing module take precedence over
template rules and declarations in the imported module; this is described in more detail below.

The xsl:import declaration has a REQUIRED href attribute whose value is a URI reference identifying the stylesheet module to be included.
This attribute is used as described in 3.10.1 Locating Stylesheet Modules.

[ERR XTSE0190] An xsl:import element MUST be a top-level element.

[ERR XTSE0200] The xsl:import element children MUST precede all other element children of an xsl:stylesheet element, including any
xsl:include element children and any user-defined data elements.

Example: Using xsl:import

For example,

<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:import href="article.xsl"/>
 <xsl:import href="bigfont.xsl"/>
 <xsl:attribute-set name="note-style">
 <xsl:attribute name="font-style">italic</xsl:attribute>
 </xsl:attribute-set>
</xsl:stylesheet>

[DEFINITION: The stylesheet levels making up a stylesheet are treated as forming an import tree. In the import tree, each stylesheet level
has one child for each xsl:import declaration that it contains.] The ordering of the children is the declaration order of the xsl:import
declarations within their stylesheet level.

[DEFINITION: A declaration D in the stylesheet is defined to have lower import precedence than another declaration E if the stylesheet level
containing D would be visited before the stylesheet level containing E in a post-order traversal of the import tree (that is, a traversal of the
import tree in which a stylesheet level is visited after its children). Two declarations within the same stylesheet level have the same import
precedence.]

For example, suppose

stylesheet module A imports stylesheet modules B and C in that order;
stylesheet module B imports stylesheet module D;
stylesheet module C imports stylesheet module E.

Then the import tree has the following structure:

 A
 |
 +---+---+
 | |
 B C
 | |
 D E

The order of import precedence (lowest first) is D, B, E, C, A.

In general, a declaration with higher import precedence takes precedence over a declaration with lower import precedence. This is defined in
detail for each kind of declaration.

[ERR XTSE0210] It is a static error if a stylesheet module directly or indirectly imports itself.

Note:

The case where a stylesheet module with a particular URI is imported several times is not treated specially. The effect is exactly the
same as if several stylesheet modules with different URIs but identical content were imported. This might or might not cause an error,
depending on the content of the stylesheet module.

3.11 Embedded Stylesheet Modules

An embedded stylesheet module is a stylesheet module whose containing element is not the outermost element of the containing XML
document. Both standard stylesheet modules and simplified stylesheet modules may be embedded in this way.

Two situations where embedded stylesheets may be useful are:

The stylesheet may be embedded in the source document to be transformed.
The stylesheet may be embedded in an XML document that describes a sequence of processing of which the XSLT transformation

Page 20 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

forms just one part.

The xsl:stylesheet element MAY have an id attribute to facilitate reference to the stylesheet module within the containing document.

Note:

In order for such an attribute value to be used as a fragment identifier in a URI, the XDM attribute node must generally have the is-id
property: see Section 5.5 is-id AccessorDM. This property will typically be set if the attribute is defined in a DTD as being of type ID, or if
is defined in a schema as being of type xs:ID. It is also necessary that the media type of the containing document should support the
use of ID values as fragment identifiers. Such support is widespread in existing products, and is expected to be endorsed in respect of
the media type application/xml by a future revision of [RFC3023].

An alternative, if the implementation supports it, is to use an xml:id attribute. XSLT allows this attribute (like other namespaced
attributes) to appear on any XSLT element.

Example: The xml-stylesheet Processing Instruction

The following example shows how the xml-stylesheet processing instruction (see [XML Stylesheet]) can be used to allow a source
document to contain its own stylesheet. The URI reference uses a relative URI with a fragment identifier to locate the xsl:stylesheet
element:

<?xml-stylesheet type="application/xslt+xml" href="#style1"?>
<!DOCTYPE doc SYSTEM "doc.dtd">
<doc>
<head>
<xsl:stylesheet id="style1"
 version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format">
<xsl:import href="doc.xsl"/>
<xsl:template match="id('foo')">
 <fo:block font-weight="bold"><xsl:apply-templates/></fo:block>
</xsl:template>
<xsl:template match="xsl:stylesheet">
 <!-- ignore -->
</xsl:template>
</xsl:stylesheet>
</head>
<body>
<para id="foo">
...
</para>
</body>
</doc>

Note:

A stylesheet module that is embedded in the document to which it is to be applied typically needs to contain a template rule that
specifies that xsl:stylesheet elements are to be ignored.

Note:

The above example uses the pseudo-attribute type="application/xslt+xml" in the xml-stylesheet processing instruction to denote an
XSLT stylesheet. This usage is subject to confirmation: see 3.4 XSLT Media Type. In the absence of a registered media type for XSLT
stylesheets, some vendors' products have adopted different conventions, notably type="text/xsl".

Note:

Support for the xml-stylesheet processing instruction is not required for conformance with this Recommendation. Implementations are
not constrained in the mechanisms they use to identify a stylesheet when a transformation is initiated: see 2.3 Initiating a
Transformation.

3.12 Conditional Element Inclusion

Any element in the XSLT namespace may have a use-when attribute whose value is an XPath expression that can be evaluated statically. If
the attribute is present and the effective boolean valueXP of the expression is false, then the element, together with all the nodes having that
element as an ancestor, is effectively excluded from the stylesheet module. When a node is effectively excluded from a stylesheet module
the stylesheet module has the same effect as if the node were not there. Among other things this means that no static or dynamic errors will
be reported in respect of the element and its contents, other than errors in the use-when attribute itself.

Note:

This does not apply to XML parsing or validation errors, which will be reported in the usual way. It also does not apply to attributes that
are necessarily processed before [xsl:]use-when, examples being xml:space and [xsl:]xpath-default-namespace.

A literal result element, or any other element within a stylesheet module that is not in the XSLT namespace, may similarly carry an xsl:use-
when attribute.

If the xsl:stylesheet or xsl:transform element itself is effectively excluded, the effect is to exclude all the children of the xsl:stylesheet or
xsl:transform element, but not the xsl:stylesheet or xsl:transform element or its attributes.

Note:

This allows all the declarations that depend on the same condition to be included in one stylesheet module, and for their inclusion or
exclusion to be controlled by a single use-when attribute at the level of the module.

Page 21 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Conditional element exclusion happens after stripping of whitespace text nodes from the stylesheet, as described in 4.2 Stripping
Whitespace from the Stylesheet.

There are no syntactic constraints on the XPath expression that can be used as the value of the use-when attribute. However, there are
severe constraints on the information provided in its evaluation context. These constraints are designed to ensure that the expression can be
evaluated at the earliest possible stage of stylesheet processing, without any dependency on information contained in the stylesheet itself or
in any source document.

Specifically, the components of the static and dynamic context are defined by the following two tables:

Within a stylesheet module, all expressions contained in [xsl:]use-when attributes are evaluated in a single execution scopeFO. This need
not be the same execution scope as that used for [xsl]:use-when expressions in other stylesheet modules, or as that used when evaluating
XPath expressions appearing elsewhere in the stylesheet module. This means that a function such as current-dateFO will return the same
result when called in different [xsl:]use-when expressions within the same stylesheet module, but will not necessarily return the same result
as the same call in an [xsl:]use-when expression within a different stylesheet module, or as a call on the same function executed during the
transformation proper.

The use of [xsl:]use-when is illustrated in the following examples.

Example: Using Conditional Exclusion to Achieve Portability

This example demonstrates the use of the use-when attribute to achieve portability of a stylesheet across schema-aware and non-
schema-aware processors.

<xsl:import-schema schema-location="http://example.com/schema"

Static Context Components for use-when Expressions

Component Value

XPath 1.0 compatibility mode false

In scope namespaces determined by the in-scope namespaces for the containing element in the stylesheet

Default element/type namespace determined by the xpath-default-namespace attribute if present (see 5.2 Unprefixed QNames in
Expressions and Patterns); otherwise the null namespace

Default function namespace The standard function namespace

In scope type definitions The type definitions that would be available in the absence of any xsl:import-schema
declaration

In scope element declarations None

In scope attribute declarations None

In scope variables None

In scope functions The core functions defined in [Functions and Operators], together with the functions element-
available, function-available, type-available, and system-property defined in this
specification, plus the set of extension functions that are present in the static context of every
XPath expression (other than a use-when expression) within the content of the element that is
the parent of the use-when attribute. Note that stylesheet functions are not included in the
context, which means that the function function-available will return false in respect of such
functions. The effect of this rule is to ensure that function-available returns true in respect of
functions that can be called within the scope of the use-when attribute. It also has the effect that
these extensions functions will be recognized within the use-when attribute itself; however, the
fact that a function is available in this sense gives no guarantee that a call on the function will
succeed.

In scope collations Implementation-defined

Default collation The Unicode Codepoint Collation

Base URI The base URI of the containing element in the stylesheet

Statically known documents None

Statically known collections None

Dynamic Context Components for use-when Expressions

Component Value

Context item, position, and size Undefined

Dynamic variables None

Current date and time Implementation-defined

Implicit timezone Implementation-defined

Available documents None

Available collections None

Page 22 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 use-when="system-property('xsl:is-schema-aware')='yes'"/>

<xsl:template match="/"
 use-when="system-property('xsl:is-schema-aware')='yes'"
 priority="2">
 <xsl:result-document validation="strict">
 <xsl:apply-templates/>
 </xsl:result-document>
</xsl:template>

<xsl:template match="/">
 <xsl:apply-templates/>
</xsl:template>

The effect of these declarations is that a non-schema-aware processor ignores the xsl:import-schema declaration and the first template
rule, and therefore generates no errors in respect of the schema-related constructs in these declarations.

Example: Including Variant Stylesheet Modules

This example includes different stylesheet modules depending on which XSLT processor is in use.

<xsl:include href="module-A.xsl"
 use-when="system-property('xsl:vendor')='vendor-A'"/>
<xsl:include href="module-B.xsl"
 use-when="system-property('xsl:vendor')='vendor-B'"/>

3.13 Built-in Types

Every XSLT 2.0 processor includes the following named type definitions in the in-scope schema components:

All the primitive atomic types defined in [XML Schema Part 2], with the exception of xs:NOTATION. That is: xs:string, xs:boolean,
xs:decimal, xs:double, xs:float, xs:date, xs:time, xs:dateTime, xs:duration, xs:QName, xs:anyURI, xs:gDay, xs:gMonthDay,
xs:gMonth, xs:gYearMonth, xs:gYear, xs:base64Binary, and xs:hexBinary.
The derived atomic type xs:integer defined in [XML Schema Part 2].
The types xs:anyType and xs:anySimpleType.
The following types defined in [XPath 2.0]: xs:yearMonthDuration, xs:dayTimeDuration, xs:anyAtomicType, xs:untyped, and
xs:untypedAtomic.

A schema-aware XSLT processor additionally supports:

All other built-in types defined in [XML Schema Part 2]
User-defined types, and element and attribute declarations, that are imported using an xsl:import-schema declaration as described in
3.14 Importing Schema Components. These may include both simple and complex types.

Note:

The names that are imported from the XML Schema namespace do not include all the names of top-level types defined in either the
Schema for Schemas or the Schema for Datatypes. The Schema for Datatypes, as well as defining built-in types such as xs:integer
and xs:double, also defines types that are intended for use only within the Schema for DataTypes, such as xs:derivationControl. A
stylesheet that is designed to process XML Schema documents as its input or output may import the Schema for Schemas.

An implementation may define mechanisms that allow additional schema components to be added to the in-scope schema components for
the stylesheet. For example, the mechanisms used to define extension functions (see 18.1 Extension Functions) may also be used to import
the types used in the interface to such functions.

These schema components are the only ones that may be referenced in XPath expressions within the stylesheet, or in the [xsl:]type and as
attributes of those elements that permit these attributes.

For a Basic XSLT Processor, schema built-in types that are not included in the static context (for example, xs:NCName) are "unknown types" in
the sense of Section 2.5.4 SequenceType MatchingXP. In the language of that section, a Basic XSLT Processor MUST be able to determine
whether these unknown types are derived from known schema types such as xs:string. The purpose of this rule is to ensure that system
functions such as local-name-from-QNameFO, which is defined to return an xs:NCName, behave correctly. A stylesheet that uses a Basic XSLT
Processor will not be able to test whether the returned value is an xs:NCName, but it will be able to use it as if it were an xs:string.

3.14 Importing Schema Components

Note:

The facilities described in this section are not available with a basic XSLT processor. They require a schema-aware XSLT processor, as
described in 21 Conformance.

<!-- Category: declaration -->
<xsl:import-schema
 namespace? = uri-reference
 schema-location? = uri-reference>
 <!-- Content: xs:schema? -->
</xsl:import-schema>

The xsl:import-schema declaration is used to identify schema components (that is, top-level type definitions and top-level element and

Page 23 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

attribute declarations) that need to be available statically, that is, before any source document is available. Names of such components used
statically within the stylesheet must refer to an in-scope schema component, which means they must either be built-in types as defined in
3.13 Built-in Types, or they must be imported using an xsl:import-schema declaration.

The xsl:import-schema declaration identifies a namespace containing the names of the components to be imported (or indicates that
components whose names are in no namespace are to be imported). The effect is that the names of top-level element and attribute
declarations and type definitions from this namespace (or non-namespace) become available for use within XPath expressions in the
stylesheet, and within other stylesheet constructs such as the type and as attributes of various XSLT elements.

The same schema components are available in all stylesheet modules; importing components in one stylesheet module makes them
available throughout the stylesheet.

The namespace and schema-location attributes are both optional.

If the xsl:import-schema element contains an xs:schema element, then the schema-location attribute must be absent, and the namespace
attribute must either have the same value as the targetNamespace attribute of the xs:schema element (if present), or must be absent, in which
case its effective value is that of the targetNamespace attribute of the xs:schema element if present or the zero-length string otherwise.

[ERR XTSE0215] It is a static error if an xsl:import-schema element that contains an xs:schema element has a schema-location attribute, or if
it has a namespace attribute that conflicts with the target namespace of the contained schema.

If two xsl:import-schema declarations specify the same namespace, or if both specify no namespace, then only the one with highest import
precedence is used. If this leaves more than one, then all the declarations at the highest import precedence are used (which may cause
conflicts, as described below).

After discarding any xsl:import-schema declarations under the above rule, the effect of the remaining xsl:import-schema declarations is
defined in terms of a hypothetical document called the synthetic schema document, which is constructed as follows. The synthetic schema
document defines an arbitrary target namespace that is different from any namespace actually used by the application, and it contains
xs:import elements corresponding one-for-one with the xsl:import-schema declarations in the stylesheet, with the following
correspondence:

The namespace attribute of the xs:import element is copied from the namespace attribute of the xsl:import-schema declaration if it is
explicitly present, or is implied by the targetNamespace attribute of a contained xs:schema element, and is absent if it is absent.
The schemaLocation attribute of the xs:import element is copied from the schema-location attribute of the xsl:import-schema
declaration if present, and is absent if it is absent. If there is a contained xs:schema element, the effective value of the schemaLocation
attribute is a URI referencing a document containing a copy of the xs:schema element.
The base URI of the xs:import element is the same as the base URI of the xsl:import-schema declaration.

The schema components included in the in-scope schema components (that is, the components whose names are available for use within
the stylesheet) are the top-level element and attribute declarations and type definitions that are available for reference within the synthetic
schema document. See [XML Schema Part 1] (section 4.2.3, References to schema components across namespaces).

[ERR XTSE0220] It is a static error if the synthetic schema document does not satisfy the constraints described in [XML Schema Part 1]
(section 5.1, Errors in Schema Construction and Structure). This includes, without loss of generality, conflicts such as multiple definitions of
the same name.

Note:

The synthetic schema document does not need to be constructed by a real implementation. It is purely a mechanism for defining the
semantics of xsl:import-schema in terms of rules that already exist within the XML Schema specification. In particular, it implicitly
defines the rules that determine whether the set of xsl:import-schema declarations are mutually consistent.

These rules do not cause names to be imported transitively. The fact that a name is available for reference within a schema document A
does not of itself make the name available for reference in a stylesheet that imports the target namespace of schema document A. (See
[XML Schema Part 1] section 3.15.3, Constraints on XML Representations of Schemas.) The stylesheet must import all the
namespaces containing names that it actually references.

The namespace attribute indicates that a schema for the given namespace is required by the stylesheet. This information may be enough
on its own to enable an implementation to locate the required schema components. The namespace attribute may be omitted to indicate
that a schema for names in no namespace is being imported. The zero-length string is not a valid namespace URI, and is therefore not
a valid value for the namespace attribute.

The schema-location attribute is a URI Reference that gives a hint indicating where a schema document or other resource containing
the required definitions may be found. It is likely that a schema-aware XSLT processor will be able to process a schema document
found at this location.

The XML Schema specification gives implementations flexibility in how to handle multiple imports for the same namespace. Multiple
imports do not cause errors if the definitions do not conflict.

A consequence of these rules is that it is not intrinsically an error if no schema document can be located for a namespace identified in
an xsl:import-schema declaration. This will cause an error only if it results in the stylesheet containing references to names that have
not been imported.

An inline schema document (using an xs:schema element as a child of the xsl:import-schema element) has the same status as an
external schema document, in the sense that it acts as a hint for a source of schema components in the relevant namespace. To ensure
that the inline schema document is always used, it is advisable to use a target namespace that is unique to this schema document.

The use of a namespace in an xsl:import-schema declaration does not by itself associate any namespace prefix with the namespace. If
names from the namespace are used within the stylesheet module then a namespace declaration must be included in the stylesheet
module, in the usual way.

Example: An Inline Schema Document

Page 24 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The following example shows an inline schema document. This declares a simple type local:yes-no, which the stylesheet then uses in
the declaration of a variable.

The example assumes the namespace declaration xmlns:local="http://localhost/ns/yes-no"

<xsl:import-schema>
 <xs:schema targetNamespace="http://localhost/ns/yes-no"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:simpleType name="local:yes-no">
 <xs:restriction base="xs:string">
 <xs:enumeration value="yes"/>
 <xs:enumeration value="no"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>
</xsl:import-schema>

<xs:variable name="condition" select="'yes'" as="local:yes-no"/>

4 Data Model

The data model used by XSLT is the XPath 2.0 and XQuery 1.0 data model (XDM), as defined in [Data Model]. XSLT operates on source,
result and stylesheet documents using the same data model.

This section elaborates on some particular features of XDM as it is used by XSLT:

The rules in 4.2 Stripping Whitespace from the Stylesheet and 4.4 Stripping Whitespace from a Source Tree make use of the concept of a
whitespace text node.

[DEFINITION: A whitespace text node is a text node whose content consists entirely of whitespace characters (that is, #x09, #x0A, #x0D, or
#x20).]

Note:

Features of a source XML document that are not represented in the XDM tree will have no effect on the operation of an XSLT stylesheet.
Examples of such features are entity references, CDATA sections, character references, whitespace within element tags, and the choice
of single or double quotes around attribute values.

4.1 XML Versions

The XDM data model defined in [Data Model] is capable of representing either an XML 1.0 document (conforming to [XML 1.0] and
[Namespaces in XML 1.0]) or an XML 1.1 document (conforming to [XML 1.1] and [Namespaces in XML 1.1]), and it makes no distinction
between the two. In principle, therefore, XSLT 2.0 can be used with either of these XML versions.

Construction of the XDM tree is outside the scope of this specification, so XSLT 2.0 places no formal requirements on an XSLT processor to
accept input from either XML 1.0 documents or XML 1.1 documents or both. This specification does define a serialization capability (see 20
Serialization), though from a conformance point of view it is an optional feature. Although facilities are described for serializing the XDM tree
as either XML 1.0 or XML 1.1 (and controlling the choice), there is again no formal requirement on an XSLT processor to support either or
both of these XML versions as serialization targets.

Because the XDM tree is the same whether the original document was XML 1.0 or XML 1.1, the semantics of XSLT processing do not
depend on the version of XML used by the original document. There is no reason in principle why all the input and output documents used in
a single transformation must conform to the same version of XML.

Some of the syntactic constructs in XSLT 2.0 and XPath 2.0, for example the productions Char XML and NCName Names, are defined by
reference to the XML and XML Namespaces specifications. There are slight variations between the XML 1.0 and XML 1.1 versions of these
productions. Implementations MAY support either version; it is RECOMMENDED that an XSLT 2.0 processor that implements the 1.1 versions
SHOULD also provide a mode that supports the 1.0 versions. It is thus implementation-defined whether the XSLT processor supports XML 1.0
with XML Namespaces 1.0, or XML 1.1 with XML Namespaces 1.1, or supports both versions at user option.

Note:

The specification referenced as [Namespaces in XML 1.0] was actually published without a version number.

At the time of writing there is no published version of [XML Schema Part 2] that references the XML 1.1 specifications. This means that data
types such as xs:NCName and xs:ID are constrained by the XML 1.0 rules, and do not allow the full range of values permitted by XML 1.1.
This situation will not be resolved until a new version of [XML Schema Part 2] becomes available; in the meantime, it is RECOMMENDED that
implementers wishing to support XML 1.1 should consult [XML Schema 1.0 and XML 1.1] for guidance. An XSLT 2.0 processor that supports
XML 1.1 SHOULD implement the rules in later versions of [XML Schema Part 2] as they become available.

4.2 Stripping Whitespace from the Stylesheet

The tree representing the stylesheet is preprocessed as follows:

1. All comments and processing instructions are removed.
2. Any text nodes that are now adjacent to each other are merged.
3. Any whitespace text node that satisfies both the following conditions is removed from the tree:

The parent of the text node is not an xsl:text element
The text node does not have an ancestor element that has an xml:space attribute with a value of preserve, unless there is a
closer ancestor element having an xml:space attribute with a value of default.

4. Any whitespace text node whose parent is one of the following elements is removed from the tree, regardless of any xml:space
attributes:

Page 25 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:analyze-string
xsl:apply-imports
xsl:apply-templates
xsl:attribute-set
xsl:call-template
xsl:character-map
xsl:choose
xsl:next-match
xsl:stylesheet
xsl:transform

5. Any whitespace text node whose following-sibling node is an xsl:param or xsl:sort element is removed from the tree, regardless of
any xml:space attributes.

[ERR XTSE0260] Within an XSLT element that is REQUIRED to be empty, any content other than comments or processing instructions, including
any whitespace text node preserved using the xml:space="preserve" attribute, is a static error.

Note:

Using xml:space="preserve" in parts of the stylesheet that contain sequence constructors will cause all text nodes in that part of the
stylesheet, including those that contain whitespace only, to be copied to the result of the sequence constructor. When the result of the
sequence constructor is used to form the content of an element, this can cause errors if such text nodes are followed by attribute nodes
generated using xsl:attribute.

Note:

If an xml:space attribute is specified on a literal result element, it will be copied to the result tree in the same way as any other attribute.

4.3 Stripping Type Annotations from a Source Tree

[DEFINITION: The term type annotation is used in this specification to refer to the value returned by the dm:type-name accessor of a node:
see Section 5.14 type-name AccessorDM.]

There is sometimes a requirement to write stylesheets that produce the same results whether or not the source documents have been
validated against a schema. To achieve this, an option is provided to remove any type annotations on element and attribute nodes in a
source tree, replacing them with an annotation of xs:untyped in the case of element nodes, and xs:untypedAtomic in the case of attribute
nodes.

Such stripping of type annotations can be requested by specifying input-type-annotations="strip" on the xsl:stylesheet element. This
attribute has three permitted values: strip, preserve, and unspecified. The default value is unspecified. Stripping of type annotations takes
place if at least one stylesheet module in the stylesheet specifies input-type-annotations="strip".

[ERR XTSE0265] It is a static error if there is a stylesheet module in the stylesheet that specifies input-type-annotations="strip" and another
stylesheet module that specifies input-type-annotations="preserve".

The source trees to which this applies are the same as those affected by xsl:strip-space and xsl:preserve-space: see 4.4 Stripping
Whitespace from a Source Tree.

When type annotations are stripped, the following changes are made to the source tree:

The type annotation of every element node is changed to xs:untyped
The type annotation of every attribute node is changed to xs:untypedAtomic
The typed value of every element and attribute node is set to be the same as its string value, as an instance of xs:untypedAtomic.
The is-nilled property of every element node is set to false.

The values of the is-id and is-idrefs properties are not changed.

Note:

Stripping type annotations does not necessarily return the document to the state it would be in had validation not taken place. In
particular, any defaulted elements and attributes that were added to the tree by the validation process will still be present , and elements
and attributes validated as IDs will still be accessible using the id FO function.

4.4 Stripping Whitespace from a Source Tree

A source tree supplied as input to the transformation process may contain whitespace text nodes that are of no interest, and that do not
need to be retained by the transformation. Conceptually, an XSLT processor makes a copy of the source tree from which unwanted
whitespace text nodes have been removed. This process is referred to as whitespace stripping.

For the purposes of this section, the term source tree means the document containing the initial context node, and any document returned
by the functions document, doc FO, or collectionFO. It does not include documents passed as the values of stylesheet parameters or returned
from extension functions.

The stripping process takes as input a set of element names whose child whitespace text nodes are to be preserved. The way in which this
set of element names is established using the xsl:strip-space and xsl:preserve-space declarations is described later in this section.

A whitespace text node is preserved if either of the following apply:

The element name of the parent of the text node is in the set of whitespace-preserving element names.
An ancestor element of the text node has an xml:space attribute with a value of preserve, and no closer ancestor element has
xml:space with a value of default.

Otherwise, the whitespace text node is stripped.

Page 26 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The xml:space attributes are not removed from the tree.

<!-- Category: declaration -->
<xsl:strip-space
 elements = tokens />

<!-- Category: declaration -->
<xsl:preserve-space
 elements = tokens />

The set of whitespace-preserving element names is specified by xsl:strip-space and xsl:preserve-space declarations. Whether an
element name is included in the set of whitespace-preserving names is determined by the best match among all the xsl:strip-space or
xsl:preserve-space declarations: it is included if and only if there is no match or the best match is an xsl:preserve-space element. The
xsl:strip-space and xsl:preserve-space elements each have an elements attribute whose value is a whitespace-separated list of
NameTests XP; an element name matches an xsl:strip-space or xsl:preserve-space element if it matches one of the NameTests XP. An
element matches a NameTest XP if and only if the NameTest XP would be true for the element as an XPath node test. When more than one
xsl:strip-space and xsl:preserve-space element matches, the best matching element is determined by the best matching NameTest XP.
This is determined in the same way as with template rules:

First, any match with lower import precedence than another match is ignored.
Next, any match that has a lower default priority than the default priority of another match is ignored.

[ERR XTRE0270] It is a recoverable dynamic error if this leaves more than one match, unless all the matched declarations are equivalent (that
is, they are all xsl:strip-space or they are all xsl:preserve-space). The optional recovery action is to select, from the matches that are left,
the one that occurs last in declaration order.

If an element in a source document has a type annotation that is a simple type or a complex type with simple content, then any whitespace
text nodes among its children are preserved, regardless of any xsl:strip-space declarations. The reason for this is that stripping a
whitespace text node from an element with simple content could make the element invalid: for example, it could cause the minLength facet to
be violated.

Stripping of type annotations happens before stripping of whitespace text nodes, so this situation will not occur if input-type-
annotations="strip" is specified.

Note:

In [Data Model], processes are described for constructing an XDM tree from an Infoset or from a PSVI. Those processes deal with
whitespace according to their own rules, and the provisions in this section apply to the resulting tree. In practice this means that
elements that are defined in a DTD or a Schema to contain element-only content will have whitespace text nodes stripped, regardless of
the xsl:strip-space and xsl:preserve-space declarations in the stylesheet.

However, source trees are not necessarily constructed using those processes; indeed, they are not necessarily constructed by parsing
XML documents. Nothing in the XSLT specification constrains how the source tree is constructed, or what happens to whitespace text
nodes during its construction. The provisions in this section relate only to whitespace text nodes that are present in the tree supplied as
input to the XSLT processor. The XSLT processor cannot preserve whitespace text nodes unless they were actually present in the
supplied tree.

4.5 Attribute Types and DTD Validation

The mapping from the Infoset to the XDM data model, described in [Data Model], does not retain attribute types. This means, for example,
that an attribute described in the DTD as having attribute type NMTOKENS will be annotated in the XDM tree as xs:untypedAtomic rather than
xs:NMTOKENS, and its typed value will consist of a single xs:untypedAtomic value rather than a sequence of xs:NMTOKEN values.

Attributes with a DTD-derived type of ID, IDREF, or IDREFS will be marked in the XDM tree as having the is-id or is-idrefs properties. It
is these properties, rather than any type annotation, that are examined by the functions id FO and idref FO described in [Functions and
Operators].

4.6 Limits

The XDM data model (see [Data Model]) leaves it to the host language to define limits. This section describes the limits that apply to XSLT.

Limits on some primitive data types are defined in [XML Schema Part 2]. Other limits, listed below, are implementation-defined. Note that
this does not necessarily mean that each limit must be a simple constant: it may vary depending on environmental factors such as available
resources.

The following limits are implementation-defined:

1. For the xs:decimal type, the maximum number of decimal digits (the totalDigits facet). This must be at least 18 digits. (Note,
however, that support for the full value range of xs:unsignedLong requires 20 digits.)

2. For the types xs:date, xs:time, xs:dateTime, xs:gYear, and xs:gYearMonth: the range of values of the year component, which must be
at least +0001 to +9999; and the maximum number of fractional second digits, which must be at least 3.

3. For the xs:duration type: the maximum absolute values of the years, months, days, hours, minutes, and seconds components.
4. For the xs:yearMonthDuration type: the maximum absolute value, expressed as an integer number of months.
5. For the xs:dayTimeDuration type: the maximum absolute value, expressed as a decimal number of seconds.
6. For the types xs:string, xs:hexBinary, xs:base64Binary, xs:QName, xs:anyURI, xs:NOTATION, and types derived from them: the

maximum length of the value.
7. For sequences, the maximum number of items in a sequence.

4.7 Disable Output Escaping

For backwards compatibility reasons, XSLT 2.0 continues to support the disable-output-escaping feature introduced in XSLT 1.0. This is
an optional feature and implementations are not REQUIRED to support it. A new facility, that of named character maps (see 20.1 Character

Page 27 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Maps) is introduced in XSLT 2.0. It provides similar capabilities to disable-output-escaping, but without distorting the data model.

If an implementation supports the disable-output-escaping attribute of xsl:text and xsl:value-of, (see 20.2 Disabling Output Escaping),
then the data model for trees constructed by the processor is augmented with a boolean value representing the value of this property. This
boolean value, however, can be set only within a final result tree that is being passed to the serializer.

Conceptually, each character in a text node on such a result tree has a boolean property indicating whether the serializer is to disable the
normal rules for escaping of special characters (for example, outputting of & as &) in respect of this character or attribute node.

Note:

In practice, the nodes in a final result tree will often be streamed directly from the XSLT processor to the serializer. In such an
implementation, disable-output-escaping can be viewed not so much a property stored with nodes in the tree, but rather as additional
information passed across the interface between the XSLT processor and the serializer.

5 Features of the XSLT Language

5.1 Qualified Names

The name of a stylesheet-defined object, specifically a named template, a mode, an attribute set, a key, a decimal-format, a variable or
parameter, a stylesheet function, a named output definition, or a character map is specified as a QName using the syntax for QName Names
as defined in [Namespaces in XML 1.0].

[DEFINITION: A QName is always written in the form (NCName ":")? NCName, that is, a local name optionally preceded by a namespace prefix.
When two QNames are compared, however, they are considered equal if the corresponding expanded-QNames are the same, as described
below.]

Because an atomic value of type xs:QName is sometimes referred to loosely as a QName, this specification also uses the term lexical QName
to emphasize that it is referring to a QName Names in its lexical form rather than its expanded form. This term is used especially when strings
containing lexical QNames are manipulated as run-time values.

[DEFINITION: A lexical QName is a string representing a QName in the form (NCName ":")? NCName, that is, a local name optionally preceded
by a namespace prefix.]

[DEFINITION: A string in the form of a lexical QName may occur as the value of an attribute node in a stylesheet module, or within an XPath
expression contained in such an attribute node, or as the result of evaluating an XPath expression contained in such an attribute node. The
element containing this attribute node is referred to as the defining element of the QName.]

[DEFINITION: An expanded-QName contains a pair of values, namely a local name and an optional namespace URI. It may also contain a
namespace prefix. Two expanded-QNames are equal if the namespace URIs are the same (or both absent) and the local names are the
same. The prefix plays no part in the comparison, but is used only if the expanded-QName needs to be converted back to a string.]

If the QName has a prefix, then the prefix is expanded into a URI reference using the namespace declarations in effect on its defining
element. The expanded-QName consisting of the local part of the name and the possibly null URI reference is used as the name of the
object. The default namespace of the defining element (see Section 6.2 Element NodesDM) is not used for unprefixed names.

There are three cases where the default namespace of the defining element is used when expanding an unprefixed QName:

1. Where a QName is used to define the name of an element being constructed. This applies both to cases where the name is known
statically (that is, the name of a literal result element) and to cases where it is computed dynamically (the value of the name attribute of
the xsl:element instruction).

2. The default namespace is used when expanding the first argument of the function element-available.
3. The default namespace applies to any unqualified element names appearing in the cdata-section-elements attribute of xsl:output or

xsl:result-document

In the case of an unprefixed QName used as a NameTest within an XPath expression (see 5.3 Expressions) , and in certain other contexts,
the namespace to be used in expanding the QName may be specified by means of the [xsl:]xpath-default-namespace attribute, as
specified in 5.2 Unprefixed QNames in Expressions and Patterns.

[ERR XTSE0280] In the case of a prefixed QName used as the value of an attribute in the stylesheet, or appearing within an XPath expression
in the stylesheet, it is a static error if the defining element has no namespace node whose name matches the prefix of the QName.

[ERR XTDE0290] Where the result of evaluating an XPath expression (or an attribute value template) is required to be a lexical QName, then
unless otherwise specified it is a non-recoverable dynamic error if the defining element has no namespace node whose name matches the
prefix of the lexical QName. This error MAY be signaled as a static error if the value of the expression can be determined statically.

5.2 Unprefixed QNames in Expressions and Patterns

The attribute [xsl:]xpath-default-namespace (see 3.5 Standard Attributes) may be used on an element in the stylesheet to define the
namespace that will be used for an unprefixed element name or type name within an XPath expression, and in certain other contexts listed
below.

The value of the attribute is the namespace URI to be used.

For any element in the stylesheet, this attribute has an effective value, which is the value of the [xsl:]xpath-default-namespace on that
element or on the innermost containing element that specifies such an attribute, or the zero-length string if no containing element specifies
such an attribute.

For any element in the stylesheet, the effective value of this attribute determines the value of the default namespace for element and type
names in the static context of any XPath expression contained in an attribute of that element (including XPath expressions in attribute value
templates). The effect of this is specified in [XPath 2.0]; in summary, it determines the namespace used for any unprefixed type name in the
SequenceType production, and for any element name appearing in a path expression or in the SequenceType production.

Page 28 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The effective value of this attribute similarly applies to any of the following constructs appearing within its scope:

any unprefixed element name or type name used in a pattern
any unprefixed element name used in the elements attribute of the xsl:strip-space or xsl:preserve-space instructions
any unprefixed element name or type name used in the as attribute of an XSLT element
any unprefixed type name used in the type attribute of an XSLT element
any unprefixed type name used in the xsl:type attribute of a literal result element.

The [xsl:]xpath-default-namespace attribute MUST be in the XSLT namespace if and only if its parent element is not in the XSLT
namespace.

If the effective value of the attribute is a zero-length string, which will be the case if it is explicitly set to a zero-length string or if it is not
specified at all, then an unprefixed element name or type name refers to a name that is in no namespace. The default namespace of the
parent element (see Section 6.2 Element NodesDM) is not used.

The attribute does not affect other names, for example function names, variable names, or template names, or strings that are interpreted as
lexical QNames during stylesheet evaluation, such as the effective value of the name attribute of xsl:element or the string supplied as the
first argument to the key function.

5.3 Expressions

XSLT uses the expression language defined by XPath 2.0 [XPath 2.0]. Expressions are used in XSLT for a variety of purposes including:

selecting nodes for processing;
specifying conditions for different ways of processing a node;
generating text to be inserted in a result tree.

[DEFINITION: Within this specification, the term XPath expression, or simply expression, means a string that matches the production Expr XP
defined in [XPath 2.0].]

An XPath expression may occur as the value of certain attributes on XSLT-defined elements, and also within curly brackets in attribute value
templates.

Except where forwards-compatible behavior is enabled (see 3.9 Forwards-Compatible Processing), it is a static error if the value of such an
attribute, or the text between curly brackets in an attribute value template, does not match the XPath production Expr XP, or if it fails to satisfy
other static constraints defined in the XPath specification, for example that all variable references MUST refer to variables that are in scope.
Error codes are defined in [XPath 2.0].

The transformation fails with a non-recoverable dynamic error if any XPath expression is evaluated and raises a dynamic error. Error codes
are defined in [XPath 2.0].

The transformation fails with a type error if an XPath expression raises a type error, or if the result of evaluating the XPath expression is
evaluated and raises a type error, or if the XPath processor signals a type error during static analysis of an expression. Error codes are
defined in [XPath 2.0].

[DEFINITION: The context within a stylesheet where an XPath expression appears may specify the required type of the expression. The
required type indicates the type of the value that the expression is expected to return.] If no required type is specified, the expression may
return any value: in effect, the required type is then item()*.

[DEFINITION: Except where otherwise indicated, the actual value of an expression is converted to the required type using the function
conversion rules. These are the rules defined in [XPath 2.0] for converting the supplied argument of a function call to the required type of
that argument, as defined in the function signature. The relevant rules are those that apply when XPath 1.0 compatibility mode is set to
false.]

This specification also invokes the XPath 2.0 function conversion rules to convert the result of evaluating an XSLT sequence constructor to a
required type (for example, the sequence constructor enclosed in an xsl:variable, xsl:template, or xsl:function element).

Any dynamic error or type error that occurs when applying the function conversion rules to convert a value to a required type results in the
transformation failing, in the same way as if the error had occurred while evaluating an expression.

Note:

Note the distinction between the two kinds of error that may occur. Attempting to convert an integer to a date is a type error, because
such a conversion is never possible. Type errors can be reported statically if they can be detected statically, whether or not the
construct in question is ever evaluated. Attempting to convert the string 2003-02-29 to a date is a dynamic error rather than a type error,
because the problem is with this particular value, not with its type. Dynamic errors are reported only if the instructions or expressions
that cause them are actually evaluated.

5.4 The Static and Dynamic Context

XPath defines the concept of an expression contextXP which contains all the information that can affect the result of evaluating an
expression. The expression context has two parts, the static contextXP, and the dynamic contextXP. The components that make up the
expression context are defined in the XPath specification (see Section 2.1 Expression ContextXP). This section describes the way in which
these components are initialized when an XPath expression is contained within an XSLT stylesheet.

As well as providing values for the static and dynamic context components defined in the XPath specification, XSLT defines additional
context components of its own. These context components are used by XSLT instructions (for example, xsl:next-match and xsl:apply-
imports), and also by the functions in the extended function library described in this specification.

The following four sections describe:

5.4.1 Initializing the Static Context

Page 29 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

5.4.2 Additional Static Context Components used by XSLT
5.4.3 Initializing the Dynamic Context
5.4.4 Additional Dynamic Context Components used by XSLT

5.4.1 Initializing the Static Context

The static contextXP of an XPath expression appearing in an XSLT stylesheet is initialized as follows. In these rules, the term containing
element means the element within the stylesheet that is the parent of the attribute whose value contains the XPath expression in question,
and the term enclosing element means the containing element or any of its ancestors.

XPath 1.0 compatibility mode is set to true if and only if the containing element occurs in part of the stylesheet where backwards
compatible behavior is enabled (see 3.8 Backwards-Compatible Processing).

The statically known namespacesXP are the namespace declarations that are in scope for the containing element.

The default element/type namespaceXP is the namespace defined by the [xsl:]xpath-default-namespace attribute on the innermost
enclosing element that has such an attribute, as described in 5.2 Unprefixed QNames in Expressions and Patterns. The value of this
attribute is a namespace URI. If there is no [xsl:]xpath-default-namespace attribute on an enclosing element, the default namespace
for element names and type names is the null namespace.

The default function namespaceXP is the standard function namespace, defined in [Functions and Operators]. This means that it is not
necessary to declare this namespace in the stylesheet, nor is it necessary to use the prefix fn (or any other prefix) in calls to the core
functions.

The in-scope schema definitionsXP for the XPath expression are the same as the in-scope schema components for the stylesheet, and
are as specified in 3.13 Built-in Types.

The in-scope variablesXP are defined by the variable binding elements that are in scope for the containing element (see 9 Variables and
Parameters).

The function signaturesXP are the core functions defined in [Functions and Operators], the constructor functions for all the atomic types
in the in-scope schema definitionsXP, the additional functions defined in this specification, the stylesheet functions defined in the
stylesheet, plus any extension functions bound using implementation-defined mechanisms (see 18 Extensibility and Fallback).

Note:
It follows from the above that a conformant XSLT processor must implement the entire library of core functions defined in
[Functions and Operators].

The statically known collationsXP are implementation-defined. However, the set of in-scope collations MUST always include the Unicode
codepoint collation, defined in Section 7.3 Equality and Comparison of StringsFO.

The default collationXP is defined by the value of the [xsl:]default-collation attribute on the innermost enclosing element that has
such an attribute. For details, see 3.6.1 The default-collation attribute.
[DEFINITION: In this specification the term default collation means the collation that is used by XPath operators such as eq and lt
appearing in XPath expressions within the stylesheet.]
This collation is also used by default when comparing strings in the evaluation of the xsl:key and xsl:for-each-group elements. This
MAY also (but need not necessarily) be the same as the default collation used for xsl:sort elements within the stylesheet. Collations
used by xsl:sort are described in 13.1.3 Sorting Using Collations.

The base URIXP is the base URI of the containing element. The concept of the base URI of a node is defined in Section 5.2 base-uri
AccessorDM

5.4.2 Additional Static Context Components used by XSLT

Some of the components of the XPath static context are used also by XSLT elements. For example, the xsl:sort element makes use of the
collations defined in the static context, and attributes such as type and as may reference types defined in the in-scope schema components.

Many top-level declarations in a stylesheet, and attributes on the xsl:stylesheet element, affect the behavior of instructions within the
stylesheet. Each of these constructs is described in its appropriate place in this specification.

A number of these constructs are of particular significance because they are used by functions defined in XSLT, which are added to the
library of functions available for use in XPath expressions within the stylesheet. These are:

The set of named keys, used by the key function
The set of named decimal formats, used by the format-number function
The values of system properties, used by the system-property function
The set of available instructions, used by the element-available function

5.4.3 Initializing the Dynamic Context

For convenience, the dynamic context is described in two parts: the focus, which represents the place in the source document that is
currently being processed, and a collection of additional context variables.

A number of functions specified in [Functions and Operators] are defined to be stable FO, meaning that if they are called twice during the
same execution scopeFO, with the same arguments, then they return the same results (see Section 1.7 TerminologyFO). In XSLT, the
execution of a stylesheet defines the execution scope. This means, for example, that if the function current-dateTimeFO is called repeatedly
during a transformation, it produces the same result each time. By implication, the components of the dynamic context on which these
functions depend are also stable for the duration of the transformation. Specifically, the following components defined in Section 2.1.2
Dynamic ContextXP must be stable: function implementations, current dateTime, implicit timezone, available documents, available
collections, and default collection. The values of global variables and stylesheet parameters are also stable for the duration of a
transformation. The focus is not stable; the additional dynamic context components defined in 5.4.4 Additional Dynamic Context
Components used by XSLT are also not stable.

As specified in [Functions and Operators], implementations may provide user options that relax the requirement for the doc FO and
collectionFO functions (and therefore, by implication, the document function) to return stable results. By default, however, the functions must
be stable. The manner in which such user options are provided, if at all, is implementation-defined.

Page 30 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

XPath expressions contained in [xsl:]use-when attributes are not considered to be evaluated "during the transformation" as defined above.
For details see 3.12 Conditional Element Inclusion.

5.4.3.1 Maintaining Position: the Focus

[DEFINITION: When a sequence constructor is evaluated, the processor keeps track of which items are being processed by means of a set of
implicit variables referred to collectively as the focus.] More specifically, the focus consists of the following three values:

[DEFINITION: The context item is the item currently being processed. An item (see [Data Model]) is either an atomic value (such as an
integer, date, or string), or a node. The context item is initially set to the initial context node supplied when the transformation is
invoked (see 2.3 Initiating a Transformation). It changes whenever instructions such as xsl:apply-templates and xsl:for-each are
used to process a sequence of items; each item in such a sequence becomes the context item while that item is being processed.] The
context item is returned by the XPath expression . (dot).
[DEFINITION: The context position is the position of the context item within the sequence of items currently being processed. It
changes whenever the context item changes. When an instruction such as xsl:apply-templates or xsl:for-each is used to process a
sequence of items, the first item in the sequence is processed with a context position of 1, the second item with a context position of 2,
and so on.] The context position is returned by the XPath expression position().
[DEFINITION: The context size is the number of items in the sequence of items currently being processed. It changes whenever
instructions such as xsl:apply-templates and xsl:for-each are used to process a sequence of items; during the processing of each
one of those items, the context size is set to the count of the number of items in the sequence (or equivalently, the position of the last
item in the sequence).] The context size is returned by the XPath expression last().

[DEFINITION: If the context item is a node (as distinct from an atomic value such as an integer), then it is also referred to as the context
node. The context node is not an independent variable, it changes whenever the context item changes. When the context item is an atomic
value, there is no context node.] The context node is returned by the XPath expression self::node(), and it is used as the starting node for
all relative path expressions.

Where the containing element of an XPath expression is an instruction or a literal result element, the initial context item, context position,
and context size for the XPath expression are the same as the context item, context position, and context size for the evaluation of the
containing instruction or literal result element.

In other cases (for example, where the containing element is xsl:sort, xsl:with-param, or xsl:key), the rules are given in the specification
of the containing element.

The current function can be used within any XPath expression to select the item that was supplied as the context item to the XPath
expression by the XSLT processor. Unlike . (dot) this is unaffected by changes to the context item that occur within the XPath expression.
The current function is described in 16.6.1 current.

On completion of an instruction that changes the focus (such as xsl:apply-templates or xsl:for-each), the focus reverts to its previous
value.

When a stylesheet function is called, the focus within the body of the function is initially undefined. The focus is also undefined on initial entry
to the stylesheet if no initial context node is supplied.

When the focus is undefined, evaluation of any expression that references the context item, context position, or context size results in a non-
recoverable dynamic error [XPDY0002]

The description above gives an outline of the way the focus works. Detailed rules for the effect of each instruction are given separately with
the description of that instruction. In the absence of specific rules, an instruction uses the same focus as its parent instruction.

[DEFINITION: A singleton focus based on a node N has the context item (and therefore the context node) set to N, and the context position
and context size both set to 1 (one).]

5.4.3.2 Other components of the XPath Dynamic Context

The previous section explained how the focus for an XPath expression appearing in an XSLT stylesheet is initialized. This section explains
how the other components of the dynamic contextXP of an XPath expression are initialized.

The dynamic variablesXP are the current values of the in-scope variable binding elements.

The current date and time represents an implementation-dependent point in time during processing of the transformation; it does not
change during the course of the transformation.

The implicit timezoneXP is implementation-defined.

The available documentsXP, and the available collectionsXP are determined as part of the process for initiating a transformation (see 2.3
Initiating a Transformation).

The available documentsXP are defined as part of the XPath 2.0 dynamic context to support the docFO function, but this component is
also referenced by the similar XSLT document function: see 16.1 Multiple Source Documents. This variable defines a mapping between
URIs passed to the docFO or document function and the document nodes that are returned.

Note:
Defining this as part of the evaluation context is a formal way of specifying that the way in which URIs get turned into document
nodes is outside the control of the language specification, and depends entirely on the run-time environment in which the
transformation takes place.

The XSLT-defined document function allows the use of URI references containing fragment identifiers. The interpretation of a fragment
identifier depends on the media type of the resource representation. Therefore, the information supplied in available documentsXP for
XSLT processing must provide not only a mapping from URIs to document nodes as required by XPath, but also a mapping from URIs
to media types.

The default collectionXP is implementation-defined. This allows options such as setting the default collection to be an empty sequence,
or to be undefined.

5.4.4 Additional Dynamic Context Components used by XSLT

In addition to the values that make up the focus, an XSLT processor maintains a number of other dynamic context components that reflect

Page 31 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

aspects of the evaluation context. These components are fully described in the sections of the specification that maintain and use them.
They are:

The current template rule, which is the template rule most recently invoked by an xsl:apply-templates, xsl:apply-imports, or
xsl:next-match instruction: see 6.7 Overriding Template Rules;
The current mode, which is the mode set by the most recent call of xsl:apply-templates (for a full definition see 6.5 Modes);
The current group and current grouping key, which provide information about the collection of items currently being processed by an
xsl:for-each-group instruction: see 14.1 The Current Group and 14.2 The Current Grouping Key;
The current captured substrings: this is a sequence of strings, which is maintained when a string is matched against a regular
expression using the xsl:analyze-string instruction, and which is accessible using the regex-group function: see 15.2 Captured
Substrings.
The output state: this is a flag whose two possible values are final output state and temporary output state. This flag indicates whether
instructions are currently writing to a final result tree or to an internal data structure. The initial setting is final output state, and it is
switched to temporary output state by instructions such as xsl:variable. For more details, see 19.1 Creating Final Result Trees.

The following non-normative table summarizes the initial state of each of the components in the evaluation context, and the instructions
which cause the state of the component to change.

5.5 Patterns

A template rule identifies the nodes to which it applies by means of a pattern. As well as being used in template rules, patterns are used for
numbering (see 12 Numbering), for grouping (see 14 Grouping), and for declaring keys (see 16.3 Keys).

[DEFINITION: A pattern specifies a set of conditions on a node. A node that satisfies the conditions matches the pattern; a node that does not
satisfy the conditions does not match the pattern. The syntax for patterns is a subset of the syntax for expressions.] As explained in detail
below, a node matches a pattern if the node can be selected by deriving an equivalent expression, and evaluating this expression with
respect to some possible context.

5.5.1 Examples of Patterns

Example: Patterns

Here are some examples of patterns:

para matches any para element.
* matches any element.
chapter|appendix matches any chapter element and any appendix element.
olist/entry matches any entry element with an olist parent.
appendix//para matches any para element with an appendix ancestor element.
schema-element(us:address) matches any element that is annotated as an instance of the type defined by the schema element
declaration us:address, and whose name is either us:address or the name of another element in its substitution group.
attribute(*, xs:date) matches any attribute annotated as being of type xs:date.
/ matches a document node.
document-node() matches a document node.
document-node(schema-element(my:invoice)) matches the document node of a document whose document element is named
my:invoice and matches the type defined by the global element declaration my:invoice.
text() matches any text node.
node() matches any node other than an attribute node, namespace node, or document node.
id("W33") matches the element with unique ID W33.
para[1] matches any para element that is the first para child element of its parent. It also matches a parentless para element.

Component Initial Setting Set by Cleared by

focus singleton focus based on the
initial context node if supplied

xsl:apply-templates, xsl:for-
each, xsl:for-each-group,
xsl:analyze-string

calls on stylesheet functions

current
template rule

If a named template is
supplied as the entry point to
the transformation, then null;
otherwise the initial template

xsl:apply-templates,
xsl:apply-imports, xsl:next-
match

xsl:for-each, xsl:for-each-group, and
xsl:analyze-string, and calls on stylesheet
functions. Also cleared while evaluating global
variables or default values of stylesheet parameters,
and the sequence constructors contained in xsl:key
and xsl:sort.

current mode the initial mode xsl:apply-templates calls on stylesheet functions

current group empty sequence xsl:for-each-group calls on stylesheet functions

current
grouping key

empty sequence xsl:for-each-group calls on stylesheet functions

current
captured
substrings

empty sequence xsl:matching-substring xsl:non-matching-substring; calls on stylesheet
functions

output state final output state Set to temporary output state by
instructions such as
xsl:variable, xsl:attribute,
etc., and by calls on stylesheet
functions

None

Page 32 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

//para matches any para element that has a parent node.
bullet[position() mod 2 = 0] matches any bullet element that is an even-numbered bullet child of its parent.
div[@class="appendix"]//p matches any p element with a div ancestor element that has a class attribute with value appendix.
@class matches any class attribute (not any element that has a class attribute).
@* matches any attribute node.

5.5.2 Syntax of Patterns

[ERR XTSE0340] Where an attribute is defined to contain a pattern, it is a static error if the pattern does not match the production Pattern. Every
pattern is a legal XPath expression, but the converse is not true: 2+2 is an example of a legal XPath expression that is not a pattern. The
XPath expressions that can be used as patterns are those that match the grammar for Pattern, given below.

Informally, a Pattern is a set of path expressions separated by |, where each step in the path expression is constrained to be an AxisStep XP
that uses only the child or attribute axes. Patterns may also use the // operator. A Predicate XP within the PredicateList XP in a pattern can
contain arbitrary XPath expressions (enclosed between square brackets) in the same way as a predicate XP in a path expression.

Patterns may start with an id FO or key function call, provided that the value to be matched is supplied as either a literal or a reference to a
variable or parameter, and the key name (in the case of the key function) is supplied as a string literal. These patterns will never match a
node in a tree whose root is not a document node.

If a pattern occurs in part of the stylesheet where backwards compatible behavior is enabled (see 3.8 Backwards-Compatible Processing),
then the semantics of the pattern are defined on the basis that the equivalent XPath expression is evaluated with XPath 1.0 compatibility
mode set to true.

Patterns

The constructs NodeTest XP, PredicateList XP, VarRef XP, Literal XP, and StringLiteral XP are part of the XPath expression language, and are
defined in [XPath 2.0].

5.5.3 The Meaning of a Pattern

The meaning of a pattern is defined formally as follows.

First we define the concept of an equivalent expression. In general, the equivalent expression is the XPath expression that takes the same
lexical form as the pattern as written. However, if the pattern contains a PathPattern that is a RelativePathPattern, then the first
PatternStep PS of this RelativePathPattern is adjusted to allow it to match a parentless element or attribute node, as follows:

If the NodeTest in PS is document-node() (optionally with arguments), and if no explicit axis is specified, then the axis in step PS is taken
as self rather than child.
If PS uses the child axis (explicitly or implicitly), and if the NodeTest in PS is not document-node() (optionally with arguments), then the
axis in step PS is replaced by child-or-top, which is defined as follows. If the context node is a parentless element, comment,
processing-instruction, or text node then the child-or-top axis selects the context node; otherwise it selects the children of the context
node. It is a forwards axis whose principal node kind is element.
If PS uses the attribute axis, then the axis in step PS is replaced by attribute-or-top, which is defined as follows. If the context node
is an attribute node with no parent, then the attribute-or-top axis selects the context node; otherwise it selects the attributes of the
context node. It is a forwards axis whose principal node kind is attribute.

The axes child-or-top and attribute-or-top are introduced only for definitional purposes. They cannot be used explicitly in a user-written
pattern or expression.

Note:

The purpose of these adjustments is to ensure that a pattern such as person matches any element named person, even if it has no
parent; and similarly, that the pattern @width matches any attribute named width, even a parentless attribute. The rule also ensures that
a pattern using a NodeTest of the form document-node(...) matches a document node. The pattern node() will match any element, text
node, comment, or processing instruction, whether or not it has a parent. For backwards compatibility reasons, the pattern node(), when
used without an explicit axis, does not match document nodes, attribute nodes, or namespace nodes. The rules are also phrased to
ensure that positional patterns of the form para[1] continue to count nodes relative to their parent, if they have one.

Let the equivalent expression, calculated according to these rules, be EE.

To determine whether a node N matches the pattern, evaluate the expression root(.)//(EE) with a singleton focus based on N. If the result
is a sequence of nodes that includes N, then node N matches the pattern; otherwise node N does not match the pattern.

[1] Pattern ::= PathPattern
| Pattern '|' PathPattern

[2] PathPattern ::= RelativePathPattern
| '/' RelativePathPattern?
| '//' RelativePathPattern
| IdKeyPattern (('/' | '//') RelativePathPattern)?

[3] RelativePathPattern ::= PatternStep (('/' | '//') RelativePathPattern)?
[4] PatternStep ::= PatternAxis? NodeTest XP PredicateListXP

[5] PatternAxis ::= ('child' '::' | 'attribute' '::' | '@')
[6] IdKeyPattern ::= 'id' '(' IdValue ')'

| 'key' '(' StringLiteralXP ',' KeyValue ')'

[7] IdValue ::= StringLiteralXP | VarRef XP

[8] KeyValue ::= Literal XP | VarRef XP

Page 33 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Example: The Semantics of Patterns

The pattern p matches any p element, because a p element will always be present in the result of evaluating the expression root(.)//
(child-or-top::p). Similarly, / matches a document node, and only a document node, because the result of the expression root(.)//
(/) returns the root node of the tree containing the context node if and only if it is a document node.

The pattern node() matches all nodes selected by the expression root(.)//(child-or-top::node()), that is, all element, text,
comment, and processing instruction nodes, whether or not they have a parent. It does not match attribute or namespace nodes
because the expression does not select nodes using the attribute or namespace axes. It does not match document nodes because for
backwards compatibility reasons the child-or-top axis does not match a document node.

Although the semantics of patterns are specified formally in terms of expression evaluation, it is possible to understand pattern matching
using a different model. In a pattern, | indicates alternatives; a pattern with one or more | separated alternatives matches if any one of the
alternatives matches. A pattern such as book/chapter/section can be examined from right to left. A node will only match this pattern if it is a
section element; and then, only if its parent is a chapter; and then, only if the parent of that chapter is a book. When the pattern uses the //
operator, one can still read it from right to left, but this time testing the ancestors of a node rather than its parent. For example
appendix//section matches every section element that has an ancestor appendix element.

The formal definition, however, is useful for understanding the meaning of a pattern such as para[1]. This matches any node selected by the
expression root(.)//(child-or-top::para[1]): that is, any para element that is the first para child of its parent, or a para element that has
no parent.

Note:

An implementation, of course, may use any algorithm it wishes for evaluating patterns, so long as the result corresponds with the formal
definition above. An implementation that followed the formal definition by evaluating the equivalent expression and then testing the
membership of a specific node in the result would probably be very inefficient.

5.5.4 Errors in Patterns

Any dynamic error or type error that occurs during the evaluation of a pattern against a particular node is treated as a recoverable error even
if the error would not be recoverable under other circumstances. The optional recovery action is to treat the pattern as not matching that
node.

Note:

The reason for this provision is that it is difficult for the stylesheet author to predict which predicates in a pattern will actually be
evaluated. In the case of match patterns in template rules, it is not even possible to predict which patterns will be evaluated against a
particular node. Making errors in patterns recoverable enables an implementation, if it chooses to do so, to report such errors while
stylesheets are under development, while masking them if they occur during production running.

One particular optimization is REQUIRED by this specification: for a PathPattern that starts with / or // or with an IdKeyPattern, the result of
testing this pattern against a node in a tree whose root is not a document node must be a non-match, rather than a dynamic error. This rule
applies to each PathPattern within a Pattern.

Note:

Without the above rule, any attempt to apply templates to a parentless element node would create the risk of a dynamic error if the
stylesheet has a template rule specifying match="/".

5.6 Attribute Value Templates

[DEFINITION: In an attribute that is designated as an attribute value template, such as an attribute of a literal result element, an expression
can be used by surrounding the expression with curly brackets ({})].

An attribute value template consists of an alternating sequence of fixed parts and variable parts. A variable part consists of an XPath
expression enclosed in curly brackets ({}). A fixed part may contain any characters, except that a left curly bracket MUST be written as
{{ and a right curly bracket MUST be written as }}.

Note:

An expression within a variable part may contain an unescaped curly bracket within a StringLiteral XP or within a comment.

[ERR XTSE0350] It is a static error if an unescaped left curly bracket appears in a fixed part of an attribute value template without a matching
right curly bracket.

It is a static error if the string contained between matching curly brackets in an attribute value template does not match the XPath production
Expr XP, or if it contains other XPath static errors. The error is signaled using the appropriate XPath error code.

[ERR XTSE0370] It is a static error if an unescaped right curly bracket occurs in a fixed part of an attribute value template.

[DEFINITION: The result of evaluating an attribute value template is referred to as the effective value of the attribute.] The effective value is
the string obtained by concatenating the expansions of the fixed and variable parts:

The expansion of a fixed part is obtained by replacing any double curly brackets ({{ or }}) by the corresponding single curly bracket.
The expansion of a variable part is obtained by evaluating the enclosed XPath expression and converting the resulting value to a
string. This conversion is done using the rules given in 5.7.2 Constructing Simple Content.

Note:

This process can generate dynamic errors, for example if the sequence contains an element with a complex content type (which cannot

Page 34 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

be atomized).

If backwards compatible behavior is enabled for the attribute, the rules for converting the value of the expression to a string are modified as
follows. After atomizing the result of the expression, all items other than the first item in the resulting sequence are discarded, and the
effective value is obtained by converting the first item in the sequence to a string. If the atomized sequence is empty, the result is a zero-
length string.

Curly brackets are not treated specially in an attribute value in an XSLT stylesheet unless the attribute is specifically designated as one that
permits an attribute value template; in an element syntax summary, the value of such attributes is surrounded by curly brackets.

Note:

Not all attributes are designated as attribute value templates. Attributes whose value is an expression or pattern, attributes of
declaration elements and attributes that refer to named XSLT objects are generally not designated as attribute value templates (an
exception is the format attribute of xsl:result-document). Namespace declarations are not XDM attribute nodes and are therefore
never treated as attribute value templates.

Example: Attribute Value Templates

The following example creates an img result element from a photograph element in the source; the value of the src and width attributes
are computed using XPath expressions enclosed in attribute value templates:

<xsl:variable name="image-dir" select="'/images'"/>

<xsl:template match="photograph">

</xsl:template>

With this source

<photograph>
 <href>headquarters.jpg</href>
 <size width="300"/>
</photograph>

the result would be

Example: Producing a Space-Separated List

The following example shows how the values in a sequence are output as a space-separated list. The following literal result element:

<temperature readings="{10.32, 5.50, 8.31}"/>

produces the output node:

<temperature readings="10.32 5.5 8.31"/>

Curly brackets are not recognized recursively inside expressions.

Example: Curly Brackets can not be Nested

For example:

is not allowed. Instead, use simply:

5.7 Sequence Constructors

[DEFINITION: A sequence constructor is a sequence of zero or more sibling nodes in the stylesheet that can be evaluated to return a
sequence of nodes and atomic values. The way that the resulting sequence is used depends on the containing instruction.]

Many XSLT elements, and also literal result elements, are defined to take a sequence constructor as their content.

Four kinds of nodes may be encountered in a sequence constructor:

Text nodes appearing in the stylesheet (if they have not been removed in the process of whitespace stripping: see 4.2 Stripping
Whitespace from the Stylesheet) are copied to create a new parentless text node in the result sequence.

Page 35 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Literal result elements are evaluated to create a new parentless element node, having the same expanded-QName as the literal result
element, which is added to the result sequence: see 11.1 Literal Result Elements
XSLT instructions produce a sequence of zero, one, or more items as their result. These items are added to the result sequence. For
most XSLT instructions, these items are nodes, but some instructions (xsl:sequence and xsl:copy-of) can also produce atomic
values. Several instructions, such as xsl:element, return a newly constructed parentless node (which may have its own attributes,
namespaces, children, and other descendants). Other instructions, such as xsl:if, pass on the items produced by their own nested
sequence constructors. The xsl:sequence instruction may return atomic values, or existing nodes.
Extension instructions (see 18.2 Extension Instructions) also produce a sequence of items as their result. The items in this sequence
are added to the result sequence.

There are several ways the result of a sequence constructor may be used.

The sequence may be bound to a variable or returned from a stylesheet function, in which case it becomes available as a value to be
manipulated in arbitrary ways by XPath expressions. The sequence is bound to a variable when the sequence constructor appears
within one of the elements xsl:variable, xsl:param, or xsl:with-param, when this instruction has an as attribute. The sequence is
returned from a stylesheet function when the sequence constructor appears within the xsl:function element.

Note:
This will typically expose to the stylesheet elements, attributes, and other nodes that have not yet been attached to a parent node
in a result tree. The semantics of XPath expressions when applied to parentless nodes are well-defined; however, such
expressions should be used with care. For example, the expression / causes a type error if the root of the tree containing the
context node is not a document node..
Parentless attribute nodes require particular care because they have no namespace nodes associated with them. A parentless
attribute node is not permitted to contain namespace-sensitive content (for example, a QName or an XPath expression) because
there is no information enabling the prefix to be resolved to a namespace URI. Parentless attributes can be useful in an application
(for example, they provide an alternative to the use of attribute sets: see 10.2 Named Attribute Sets) but they need to be handled
with care.

The sequence may be returned as the result of the containing element. This happens when the instruction containing the sequence
constructor is xsl:analyze-string, xsl:apply-imports, xsl:apply-templates, xsl:call-template, xsl:choose, xsl:fallback,
xsl:for-each, xsl:for-each-group, xsl:if, xsl:matching-substring, xsl:next-match, xsl:non-matching-substring, xsl:otherwise,
xsl:perform-sort, xsl:sequence, or xsl:when
The sequence may be used to construct the content of a new element or document node. This happens when the sequence
constructor appears as the content of a literal result element, or of one of the instructions xsl:copy, xsl:element, xsl:document,
xsl:result-document, or xsl:message. It also happens when the sequence constructor is contained in one of the elements
xsl:variable, xsl:param, or xsl:with-param, when this instruction has no as attribute. For details, see 5.7.1 Constructing Complex
Content.
The sequence may be used to construct the string value of an attribute node, text node, namespace node, comment node, or
processing instruction node. This happens when the sequence constructor is contained in one of the elements xsl:attribute,
xsl:value-of, xsl:namespace, xsl:comment, or xsl:processing-instruction. For details, see 5.7.2 Constructing Simple Content.

Note:

The term sequence constructor replaces template as used in XSLT 1.0. The change is made partly for clarity (to avoid confusion with
template rules and named templates), but also to reflect a more formal definition of the semantics. Whereas XSLT 1.0 described a
template as a sequence of instructions that write to the result tree, XSLT 2.0 describes a sequence constructor as something that can
be evaluated to return a sequence of items; what happens to these items depends on the containing instruction.

5.7.1 Constructing Complex Content

This section describes how the sequence obtained by evaluating a sequence constructor may be used to construct the children of a newly
constructed document node, or the children, attributes and namespaces of a newly constructed element node. The sequence of items may
be obtained by evaluating the sequence constructor contained in an instruction such as xsl:copy, xsl:element, xsl:document, xsl:result-
document, or a literal result element.

When constructing the content of an element, the inherit-namespaces attribute of the xsl:element or xsl:copy instruction, or the
xsl:inherit-namespaces property of the literal result element, determines whether namespace nodes are to be inherited. The effect of this
attribute is described in the rules that follow.

The sequence is processed as follows (applying the rules in the order they are listed):

1. The containing instruction may generate attribute nodes and/or namespace nodes, as specified in the rules for the individual
instruction. For example, these nodes may be produced by expanding an [xsl:]use-attribute-sets attribute, or by expanding the
attributes of a literal result element. Any such nodes are prepended to the sequence produced by evaluating the sequence constructor.

2. Any atomic value in the sequence is cast to a string.
Note:
Casting from xs:QName or xs:NOTATION to xs:string always succeeds, because these values retain a prefix for this purpose.
However, there is no guarantee that the prefix used will always be meaningful in the context where the resulting string is used.

3. Any consecutive sequence of strings within the result sequence is converted to a single text node, whose string value contains the
content of each of the strings in turn, with a single space (#x20) used as a separator between successive strings.

4. Any document node within the result sequence is replaced by a sequence containing each of its children, in document order.
5. Zero-length text nodes within the result sequence are removed.
6. Adjacent text nodes within the result sequence are merged into a single text node.
7. Invalid namespace and attribute nodes are detected as follows.

[ERR XTDE0410] It is a non-recoverable dynamic error if the result sequence used to construct the content of an element node contains a
namespace node or attribute node that is preceded in the sequence by a node that is neither a namespace node nor an attribute node.
[ERR XTDE0420] It is a non-recoverable dynamic error if the result sequence used to construct the content of a document node contains
a namespace node or attribute node.
[ERR XTDE0430] It is a non-recoverable dynamic error if the result sequence contains two or more namespace nodes having the same
name but different string values (that is, namespace nodes that map the same prefix to different namespace URIs).
[ERR XTDE0440] It is a non-recoverable dynamic error if the result sequence contains a namespace node with no name and the element
node being constructed has a null namespace URI (that is, it is an error to define a default namespace when the element is in no

Page 36 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

namespace).
8. If the result sequence contains two or more namespace nodes with the same name (or no name) and the same string value (that is,

two namespace nodes mapping the same prefix to the same namespace URI), then all but one of the duplicate nodes are discarded.
Note:
Since the order of namespace nodes is undefined, it is not significant which of the duplicates is retained.

9. If an attribute A in the result sequence has the same name as another attribute B that appears later in the result sequence, then
attribute A is discarded from the result sequence.

10. Each node in the resulting sequence is attached as a namespace, attribute, or child of the newly constructed element or document
node. Conceptually this involves making a deep copy of the node; in practice, however, copying the node will only be necessary if the
existing node can be referenced independently of the parent to which it is being attached. When copying an element or processing
instruction node, its base URI property is changed to be the same as that of its new parent, unless it has an xml:base attribute (see
[XML Base]) that overrides this. If the copied element has an xml:base attribute, its base URI is the value of that attribute, resolved (if it
is relative) against the base URI of the new parent node.

11. If the newly constructed node is an element node, then namespace fixup is applied to this node, as described in 5.7.3 Namespace
Fixup.

12. If the newly constructed node is an element node, and if namespaces are inherited, then each namespace node of the newly
constructed element (including any produced as a result of the namespace fixup process) is copied to each descendant element of the
newly constructed element, unless that element or an intermediate element already has a namespace node with the same name (or
absence of a name) or that descendant element or an intermediate element is in no namespace and the namespace node has no
name.

Example: A Sequence Constructor for Complex Content

Consider the following stylesheet fragment:

<td>
 <xsl:attribute name="valign">top</xsl:attribute>
 <xsl:value-of select="@description"/>
</td>

This fragment consists of a literal result element td, containing a sequence constructor that consists of two instructions: xsl:attribute
and xsl:value-of. The sequence constructor is evaluated to produce a sequence of two nodes: a parentless attribute node, and a
parentless text node. The td instruction causes a td element to be created; the new attribute therefore becomes an attribute of the new
td element, while the text node created by the xsl:value-of instruction becomes a child of the td element (unless it is zero-length, in
which case it is discarded).

Example: Space Separators in Element Content

Consider the following stylesheet fragment:

<doc>
 <e><xsl:sequence select="1 to 5"/></e>
 <f>
 <xsl:for-each select="1 to 5">
 <xsl:value-of select="."/>
 </xsl:for-each>
 </f>
</doc>

This produces the output (when indented):

<doc>
 <e>1 2 3 4 5</e>
 <f>12345</f>
</doc>

The difference between the two cases is that for the e element, the sequence constructor generates a sequence of five atomic values,
which are therefore separated by spaces. For the f element, the content is a sequence of five text nodes, which are concatenated
without space separation.

It is important to be aware of the distinction between xsl:sequence, which returns the value of its select expression unchanged, and
xsl:value-of, which constructs a text node.

5.7.2 Constructing Simple Content

The xsl:attribute, xsl:comment, xsl:processing-instruction, xsl:namespace, and xsl:value-of elements create nodes that cannot have
children. Specifically, the xsl:attribute instruction creates an attribute node, xsl:comment creates a comment node, xsl:processing-
instruction creates a processing instruction node, xsl:namespace creates a namespace node, and xsl:value-of creates a text node. The
string value of the new node is constructed using either the select attribute of the instruction, or the sequence constructor that forms the
content of the instruction. The select attribute allows the content to be specified by means of an XPath expression, while the sequence
constructor allows it to be specified by means of a sequence of XSLT instructions. The select attribute or sequence constructor is evaluated
to produce a result sequence, and the string value of the new node is derived from this result sequence according to the rules below.

These rules are also used to compute the effective value of an attribute value template. In this case the sequence being processed is the
result of evaluating an XPath expression enclosed between curly brackets, and the separator is a single space character.

Page 37 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

1. Zero-length text nodes in the sequence are discarded.
2. Adjacent text nodes in the sequence are merged into a single text node.
3. The sequence is atomized.
4. Every value in the atomized sequence is cast to a string.
5. The strings within the resulting sequence are concatenated, with a (possibly zero-length) separator inserted between successive

strings. The default separator is a single space. In the case of xsl:attribute and xsl:value-of, a different separator can be specified
using the separator attribute of the instruction; it is permissible for this to be a zero-length string, in which case the strings are
concatenated with no separator. In the case of xsl:comment, xsl:processing-instruction, and xsl:namespace , and when expanding
an attribute value template, the default separator cannot be changed.

6. In the case of xsl:processing-instruction, any leading spaces in the resulting string are removed.
7. The resulting string forms the string value of the new attribute, namespace, comment, processing-instruction, or text node.

Example: Space Separators in Attribute Content

Consider the following stylesheet fragment:

<doc>
 <xsl:attribute name="e" select="1 to 5"/>
 <xsl:attribute name="f">
 <xsl:for-each select="1 to 5">
 <xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:attribute>
</doc>

This produces the output:

<doc e="1 2 3 4 5" f="12345"/>

The difference between the two cases is that for the e attribute, the sequence constructor generates a sequence of five atomic values,
which are therefore separated by spaces. For the f attribute, the content is supplied as a sequence of five text nodes, which are
concatenated without space separation.

Specifying separator="" on the first xsl:attribute instruction would cause the attribute value to be e="12345". A separator attribute
on the second xsl:attribute instruction would have no effect, since the separator only affects the way adjacent atomic values are
handled: separators are never inserted between adjacent text nodes.

Note:

If an attribute value template contains a sequence of fixed and variable parts, no additional whitespace is inserted between the
expansions of the fixed and variable parts. For example, the effective value of the attribute a="chapters{4 to 6}" is a="chapters4 5 6".

5.7.3 Namespace Fixup

In a tree supplied to or constructed by an XSLT processor, the constraints relating to namespace nodes that are specified in [Data Model]
MUST be satisfied. For example

If an element node has an expanded-QName with a non-null namespace URI, then that element node MUST have at least one
namespace node whose string value is the same as that namespace URI.
If an element node has an attribute node whose expanded-QName has a non-null namespace URI, then the element MUST have at
least one namespace node whose string value is the same as that namespace URI and whose name is non-empty.
Every element MUST have a namespace node whose expanded-QName has local-part xml and whose string value is
http://www.w3.org/XML/1998/namespace. The namespace prefix xml must not be associated with any other namespace URI, and the
namespace URI http://www.w3.org/XML/1998/namespace must not be associated with any other prefix.
A namespace node MUST NOT have the name xmlns.

[DEFINITION: The rules for the individual XSLT instructions that construct a result tree (see 11 Creating Nodes and Sequences) prescribe
some of the situations in which namespace nodes are written to the tree. These rules, however, are not sufficient to ensure that the
prescribed constraints are always satisfied. The XSLT processor MUST therefore add additional namespace nodes to satisfy these
constraints. This process is referred to as namespace fixup.]

The actual namespace nodes that are added to the tree by the namespace fixup process are implementation-dependent, provided firstly,
that at the end of the process the above constraints MUST all be satisfied, and secondly, that a namespace node MUST NOT be added to the
tree unless the namespace node is necessary either to satisfy these constraints, or to enable the tree to be serialized using the original
namespace prefixes from the source document or stylesheet.

Namespace fixup MUST NOT result in an element having multiple namespace nodes with the same name.

Namespace fixup MAY, if necessary to resolve conflicts, change the namespace prefix contained in the QName value that holds the name of
an element or attribute node. This includes the option to add or remove a prefix. However, namespace fixup MUST NOT change the prefix
component contained in a value of type xs:QName or xs:NOTATION that forms the typed value of an element or attribute node.

Note:

Namespace fixup is not used to create namespace declarations for xs:QName or xs:NOTATION values appearing in the content of an
element or attribute.

Where values acquire such types as the result of validation, namespace fixup does not come into play, because namespace fixup
happens before validation: in this situation, it is the user's responsibility to ensure that the element being validated has the required

Page 38 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

namespace nodes to enable validation to succeed.

Where existing elements are copied along with their existing type annotations (validation="preserve") the rules require that existing
namespace nodes are also copied, so that any namespace-sensitive values remain valid.

Where existing attributes are copied along with their existing type annotations, the rules of the XDM data model require that a parentless
attribute node cannot contain a namespace-sensitive typed value; this means that it is an error to copy an attribute using
validation="preserve" if it contains namespace-sensitive content.

[ERR XTDE0485] It is a non-recoverable dynamic error if namespace fixup is performed on an element that contains among the typed values of
the element and its attributes two values of type xs:QName or xs:NOTATION containing conflicting namespace prefixes, that is, two values that
use the same prefix to refer to different namespace URIs.

Namespace fixup is applied to every element that is constructed using a literal result element, or one of the instructions xsl:element,
xsl:copy, or xsl:copy-of. An implementation is not REQUIRED to perform namespace fixup for elements in any source document, that is, for
a document in the initial input sequence, documents loaded using the document, doc FO or collectionFO function, documents supplied as the
value of a stylesheet parameter, or documents returned by an extension function or extension instruction.

Note:

A source document (an input document, a document returned by the document, docFO or collectionFO functions, a document returned by
an extension function or extension instruction, or a document supplied as a stylesheet parameter) is required to satisfy the constraints
described in [Data Model], including the constraints imposed by the namespace fixup process. The effect of supplying a pseudo-
document that does not meet these constraints is undefined.

In an Infoset (see [XML Information Set]) created from a document conforming to [Namespaces in XML 1.0], it will always be true that if a
parent element has an in-scope namespace with a non-empty namespace prefix, then its child elements will also have an in-scope
namespace with the same namespace prefix, though possibly with a different namespace URI. This constraint is removed in [Namespaces
in XML 1.1]. XSLT 2.0 supports the creation of result trees that do not satisfy this constraint: the namespace fixup process does not add a
namespace node to an element merely because its parent node in the result tree has such a namespace node. However, the process of
constructing the children of a new element, which is described in 5.7.1 Constructing Complex Content, does cause the namespaces of a
parent element to be inherited by its children unless this is prevented using [xsl:]inherit-namespaces="no" on the instruction that creates
the parent element.

Note:

This has implications on serialization, defined in [XSLT and XQuery Serialization]. It means that it is possible to create final result trees
that cannot be faithfully serialized as XML 1.0 documents. When such a result tree is serialized as XML 1.0, namespace declarations
written for the parent element will be inherited by its child elements as if the corresponding namespace nodes were present on the child
element, except in the case of the default namespace, which can be undeclared using the construct xmlns="". When the same result
tree is serialized as XML 1.1, however, it is possible to undeclare any namespace on the child element (for example, xmlms:foo="") to
prevent this inheritance taking place.

5.8 URI References

[DEFINITION: Within this specification, the term URI Reference, unless otherwise stated, refers to a string in the lexical space of the
xs:anyURI data type as defined in [XML Schema Part 2].] Note that this is a wider definition than that in [RFC3986]: in particular, it is
designed to accommodate Internationalized Resource Identifiers (IRIs) as described in [RFC3987], and thus allows the use of non-ASCII
characters without escaping.

URI References are used in XSLT with three main roles:

As namespace URIs
As collation URIs
As identifiers for resources such as stylesheet modules; these resources are typically accessible using a protocol such as HTTP.
Examples of such identifiers are the URIs used in the href attributes of xsl:import, xsl:include, and xsl:result-document.

The rules for namespace URIs are given in [Namespaces in XML 1.0] and [Namespaces in XML 1.1]. Those specifications deprecate the
use of relative URIs as namespace URIs.

The rules for collation URIs are given in [Functions and Operators].

URI references used to identify external resources must conform to the same rules as the locator attribute (href) defined in section 5.4 of
[XLink]. If the URI reference is relative, then it is resolved (unless otherwise specified) against the base URI of the containing element node,
according to the rules of [RFC3986], after first escaping all characters that need to be escaped to make it a valid RFC3986 URI reference.
(But a relative URI in the href attribute of xsl:result-document is resolved against the Base Output URI.)

Other URI references appearing in an XSLT stylesheet document, for example the system identifiers of external entities or the value of the
xml:base attribute, must follow the rules in their respective specifications.

6 Template Rules

Template rules define the processing that can be applied to nodes that match a particular pattern.

6.1 Defining Templates

<!-- Category: declaration -->
<xsl:template
 match? = pattern
 name? = qname
 priority? = number
 mode? = tokens
 as? = sequence-type>
 <!-- Content: (xsl:param*, sequence-constructor) -->
</xsl:template>

Page 39 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

[DEFINITION: An xsl:template declaration defines a template, which contains a sequence constructor for creating nodes and/or atomic
values. A template can serve either as a template rule, invoked by matching nodes against a pattern, or as a named template, invoked
explicitly by name. It is also possible for the same template to serve in both capacities.]

[ERR XTSE0500] An xsl:template element MUST have either a match attribute or a name attribute, or both. An xsl:template element that has
no match attribute MUST have no mode attribute and no priority attribute.

If an xsl:template element has a match attribute, then it is a template rule. If it has a name attribute, then it is a named template.

A template may be invoked in a number of ways, depending on whether it is a template rule, a named template, or both. The result of
invoking the template is the result of evaluating the sequence constructor contained in the xsl:template element (see 5.7 Sequence
Constructors).

If an as attribute is present, the as attribute defines the required type of the result. The result of evaluating the sequence constructor is then
converted to the required type using the function conversion rules. If no as attribute is specified, the default value is item()*, which permits
any value. No conversion then takes place.

[ERR XTTE0505] It is a type error if the result of evaluating the sequence constructor cannot be converted to the required type.

6.2 Defining Template Rules

This section describes template rules. Named templates are described in 10.1 Named Templates.

A template rule is specified using the xsl:template element with a match attribute. The match attribute is a Pattern that identifies the node or
nodes to which the rule applies. The result of applying the template rule is the result of evaluating the sequence constructor contained in the
xsl:template element, with the matching node used as the context node.

Example: A simple Template Rule

For example, an XML document might contain:

This is an <emph>important</emph> point.

The following template rule matches emph elements and produces a fo:wrapper element with a font-weight property of bold.

<xsl:template match="emph">
 <fo:wrapper font-weight="bold" xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <xsl:apply-templates/>
 </fo:wrapper>
</xsl:template>

A template rule is evaluated when an xsl:apply-templates instruction selects a node that matches the pattern specified in the match
attribute. The xsl:apply-templates instruction is described in the next section. If several template rules match a selected node, only one of
them is evaluated, as described in 6.4 Conflict Resolution for Template Rules.

6.3 Applying Template Rules

<!-- Category: instruction -->
<xsl:apply-templates
 select? = expression
 mode? = token>
 <!-- Content: (xsl:sort | xsl:with-param)* -->
</xsl:apply-templates>

The xsl:apply-templates instruction takes as input a sequence of nodes (typically nodes in a source tree), and produces as output a
sequence of items; these will often be nodes to be added to a result tree.

If the instruction has one or more xsl:sort children, then the input sequence is sorted as described in 13 Sorting. The result of this sort is
referred to below as the sorted sequence; if there are no xsl:sort elements, then the sorted sequence is the same as the input sequence.

Each node in the input sequence is processed by finding a template rule whose pattern matches that node. If there is more than one, the
best among them is chosen, using rules described in 6.4 Conflict Resolution for Template Rules. If there is no template rule whose pattern
matches the node, a built-in template rule is used (see 6.6 Built-in Template Rules). The chosen template rule is evaluated. The rule that
matches the Nth node in the sorted sequence is evaluated with that node as the context item, with N as the context position, and with the
length of the sorted sequence as the context size. Each template rule that is evaluated produces a sequence of items as its result. The
resulting sequences (one for each node in the sorted sequence) are then concatenated, to form a single sequence. They are concatenated
retaining the order of the nodes in the sorted sequence. The final concatenated sequence forms the result of the xsl:apply-templates
instruction.

Example: Applying Template Rules

Suppose the source document is as follows:

<message>Proceed <emph>at once</emph> to the exit!</message>

This can be processed using the two template rules shown below.

<xsl:template match="message">
 <p>
 <xsl:apply-templates select="child::node()"/>

Page 40 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 </p>
</xsl:template>

<xsl:template match="emph">

 <xsl:apply-templates select="child::node()"/>

</xsl:template>

There is no template rule for the document node; the built-in template rule for this node will cause the message element to be processed.
The template rule for the message element causes a p element to be written to the result tree; the contents of this p element are
constructed as the result of the xsl:apply-templates instruction. This instruction selects the three child nodes of the message element (a
text node containing the value "Proceed ", an emph element node, and a text node containing the value " to the exit!"). The two text
nodes are processed using the built-in template rule for text nodes, which returns a copy of the text node. The emph element is
processed using the explicit template rule that specifies match="emph".

When the emph element is processed, this template rule constructs a b element. The contents of the b element are constructed by
means of another xsl:apply-templates instruction, which in this case selects a single node (the text node containing the value "at
once"). This is again processed using the built-in template rule for text nodes, which returns a copy of the text node.

The final result of the match="message" template rule thus consists of a p element node with three children: a text node containing the
value "Proceed ", a b element that is the parent of a text node containing the value "at once", and a text node containing the value " to
the exit!". This result tree might be serialized as:

<p>Proceed at once to the exit!</p>

The default value of the select attribute is child::node(), which causes all the children of context node to be processed.

[ERR XTTE0510] It is a type error if an xsl:apply-templates instruction with no select attribute is evaluated when the context item is not a
node.

A select attribute can be used to process nodes selected by an expression instead of processing all children. The value of the select
attribute is an expression. The expression MUST evaluate to a sequence of nodes (it can contain zero, one, or more nodes).

[ERR XTTE0520] It is a type error if the sequence returned by the select expression contains an item that is not a node.

Note:

In XSLT 1.0, the select attribute selected a set of nodes, which by default were processed in document order. In XSLT 2.0, it selects a
sequence of nodes. In cases that would have been valid in XSLT 1.0, the expression will return a sequence of nodes in document order,
so the effect is the same.

Example: Applying Templates to Selected Nodes

The following example processes all of the given-name children of the author elements that are children of author-group:

<xsl:template match="author-group">
 <fo:wrapper>
 <xsl:apply-templates select="author/given-name"/>
 </fo:wrapper>
</xsl:template>

Example: Applying Templates to Nodes that are not Descendants

It is also possible to process elements that are not descendants of the context node. This example assumes that a department element
has group children and employee descendants. It finds an employee's department and then processes the group children of the
department.

<xsl:template match="employee">
 <fo:block>
 Employee <xsl:apply-templates select="name"/> belongs to group
 <xsl:apply-templates select="ancestor::department/group"/>
 </fo:block>
</xsl:template>

Example: Matching by Schema-Defined Types

It is possible to write template rules that are matched according to the schema-defined type of an element or attribute. The following
example applies different formatting to the children of an element depending on their type:

<xsl:template match="product">
 <table>
 <xsl:apply-templates select="*"/>
 </table>
</xsl:template>

Page 41 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

<xsl:template match="product/*" priority="3">
 <tr>
 <td><xsl:value-of select="name()"/></td>
 <td><xsl:next-match/></td>
 </tr>
</xsl:template>

<xsl:template match="product/element(*, xs:decimal) |
 product/element(*, xs:double)" priority="2">
 <xsl:value-of select="format-number(xs:double(.), '#,###0.00')"/>
</xsl:template>

<xsl:template match="product/element(*, xs:date)" priority="2">
 <xsl:value-of select="format-date(., '[Mn] [D], [Y]')"/>
</xsl:template>

<xsl:template match="product/*" priority="1.5">
 <xsl:value-of select="."/>
</xsl:template>

The xsl:next-match instruction is described in 6.7 Overriding Template Rules.

Example: Re-ordering Elements in the Result Tree

Multiple xsl:apply-templates elements can be used within a single template to do simple reordering. The following example creates
two HTML tables. The first table is filled with domestic sales while the second table is filled with foreign sales.

<xsl:template match="product">
 <table>
 <xsl:apply-templates select="sales/domestic"/>
 </table>
 <table>
 <xsl:apply-templates select="sales/foreign"/>
 </table>
</xsl:template>

Example: Processing Recursive Structures

It is possible for there to be two matching descendants where one is a descendant of the other. This case is not treated specially: both
descendants will be processed as usual.

For example, given a source document

<doc><div><div></div></div></doc>

the rule

<xsl:template match="doc">
 <xsl:apply-templates select=".//div"/>
</xsl:template>

will process both the outer div and inner div elements.

This means that if the template rule for the div element processes its own children, then these grandchildren will be processed more
than once, which is probably not what is required. The solution is to process one level at a time in a recursive descent, by using
select="div" in place of select=".//div"

Note:

The xsl:apply-templates instruction is most commonly used to process nodes that are descendants of the context node. Such use of
xsl:apply-templates cannot result in non-terminating processing loops. However, when xsl:apply-templates is used to process
elements that are not descendants of the context node, the possibility arises of non-terminating loops. For example,

<xsl:template match="foo">
 <xsl:apply-templates select="."/>
</xsl:template>

Implementations may be able to detect such loops in some cases, but the possibility exists that a stylesheet may enter a non-terminating
loop that an implementation is unable to detect. This may present a denial of service security risk.

6.4 Conflict Resolution for Template Rules

It is possible for a node in a source document to match more than one template rule. When this happens, only one template rule is evaluated
for the node. The template rule to be used is determined as follows:

Page 42 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

1. First, only the matching template rule or rules with the highest import precedence are considered. Other matching template rules with
lower precedence are eliminated from consideration.

2. Next, of the remaining matching rules, only those with the highest priority are considered. Other matching template rules with lower
priority are eliminated from consideration. The priority of a template rule is specified by the priority attribute on the xsl:template
declaration.
[ERR XTSE0530] The value of this attribute MUST conform to the rules for the xs:decimal type defined in [XML Schema Part 2]. Negative
values are permitted..
[DEFINITION: If no priority attribute is specified on the xsl:template element, a default priority is computed, based on the syntax of
the pattern supplied in the match attribute.] The rules are as follows:

If the pattern contains multiple alternatives separated by | , then the template rule is treated equivalently to a set of template
rules, one for each alternative. However, it is not an error if a node matches more than one of the alternatives.
If the pattern has the form /, then the priority is −0.5.
If the pattern has the form of a QName optionally preceded by a PatternAxis or has the form processing-instruction
(StringLiteralXP) or processing-instruction(NCName Names) optionally preceded by a PatternAxis, then the priority is 0.

If the pattern has the form of an ElementTestXP or AttributeTestXP, optionally preceded by a PatternAxis, then the priority is as
shown in the table below. In this table, the symbols E, A, and T represent an arbitrary element name, attribute name, and type
name respectively, while the symbol * represents itself. The presence or absence of the symbol ? following a type name does not
affect the priority.

If the pattern has the form of a DocumentTestXP, then if it includes no ElementTestXP or SchemaElementTestXP the priority is −0.5.
If it does include an ElementTestXP or SchemaElementTestXP, then the priority is the same as the priority of that ElementTestXP or
SchemaElementTestXP, computed according to the table above.

If the pattern has the form NCName Names:* or *:NCName Names, optionally preceded by a PatternAxis, then the priority is −0.25.

If the pattern is any other NodeTest XP, optionally preceded by a PatternAxis, then the priority is −0.5.

Otherwise, the priority is 0.5.
Note:
In many cases this means that highly selective patterns have higher priority than less selective patterns. The most common kind of
pattern (a pattern that tests for a node of a particular kind, with a particular expanded-QName or a particular type) has priority 0.
The next less specific kind of pattern (a pattern that tests for a node of a particular kind and an expanded-QName with a particular
namespace URI) has priority −0.25. Patterns less specific than this (patterns that just test for nodes of a given kind) have priority
−0.5. Patterns that specify both the name and the required type have a priority of +0.25, putting them above patterns that only
specify the name or the type. Patterns more specific than this, for example patterns that include predicates or that specify the
ancestry of the required node, have priority 0.5.
However, it is not invariably true that a more selective pattern has higher priority than a less selective pattern. For example, the
priority of the pattern node()[self::*] is higher than that of the pattern salary. Similarly, the patterns attribute(*, xs:decimal)
and attribute(*, xs:short) have the same priority, despite the fact that the latter pattern matches a subset of the nodes
matched by the former. Therefore, to achieve clarity in a stylesheet it is good practice to allocate explicit priorities.

[ERR XTRE0540] It is a recoverable dynamic error if the conflict resolution algorithm for template rules leaves more than one matching
template rule. The optional recovery action is to select, from the matching template rules that are left, the one that occurs last in declaration
order.

6.5 Modes

[DEFINITION: Modes allow a node in a source tree to be processed multiple times, each time producing a different result. They also allow
different sets of template rules to be active when processing different trees, for example when processing documents loaded using the
document function (see 16.1 Multiple Source Documents) or when processing temporary trees.]

[DEFINITION: There is always a default mode available. The default mode is an unnamed mode, and it is used when no mode attribute is
specified on an xsl:apply-templates instruction.]

Every mode other than the default mode is identified by a QName.

A template rule is applicable to one or more modes. The modes to which it is applicable are defined by the mode attribute of the xsl:template
element. If the attribute is omitted, then the template rule is applicable to the default mode. If the attribute is present, then its value MUST be a
non-empty whitespace-separated list of tokens, each of which defines a mode to which the template rule is applicable. Each token MUST be
one of the following:

Format Priority Notes

element() −0.5 (equivalent to *)

element(*) −0.5 (equivalent to *)

attribute() −0.5 (equivalent to @*)

attribute(*) −0.5 (equivalent to @*)

element(E) 0 (equivalent to E)

element(*,T) 0 (matches by type only)

attribute(A) 0 (equivalent to @A)

attribute(*,T) 0 (matches by type only)

element(E,T) 0.25 (matches by name and type)

schema-element(E) 0.25 (matches by substitution group and type)

attribute(A,T) 0.25 (matches by name and type)

schema-attribute(A) 0.25 (matches by name and type)

Page 43 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

a QName, which is expanded as described in 5.1 Qualified Names to define the name of the mode
the token #default, to indicate that the template rule is applicable to the default mode
the token #all, to indicate that the template rule is applicable to all modes (that is, to the default mode and to every mode that is
named in an xsl:apply-templates instruction or xsl:template declaration anywhere in the stylesheet).

[ERR XTSE0550] It is a static error if the list is empty, if the same token is included more than once in the list, if the list contains an invalid
token, or if the token #all appears together with any other value.

The xsl:apply-templates element also has an optional mode attribute. The value of this attribute MUST either be a QName, which is
expanded as described in 5.1 Qualified Names to define the name of a mode, or the token #default, to indicate that the default mode is to
be used, or the token #current, to indicate that the current mode is to be used. If the attribute is omitted, the default mode is used.

When searching for a template rule to process each node selected by the xsl:apply-templates instruction, only those template rules that
are applicable to the selected mode are considered.

[DEFINITION: At any point in the processing of a stylesheet, there is a current mode. When the transformation is initiated, the current mode is
the default mode, unless a different initial mode has been supplied, as described in 2.3 Initiating a Transformation. Whenever an xsl:apply-
templates instruction is evaluated, the current mode becomes the mode selected by this instruction.] When a stylesheet function is called,
the current mode becomes the default mode. No other instruction changes the current mode. On completion of the xsl:apply-templates
instruction, or on return from a stylesheet function call, the current mode reverts to its previous value. The current mode is used when an
xsl:apply-templates instruction uses the syntax mode="#current"; it is also used by the xsl:apply-imports and xsl:next-match
instructions (see 6.7 Overriding Template Rules).

6.6 Built-in Template Rules

When a node is selected by xsl:apply-templates and there is no template rule in the stylesheet that can be used to process that node, a
built-in template rule is evaluated instead.

The built-in template rules apply to all modes.

The built-in rule for document nodes and element nodes is equivalent to calling xsl:apply-templates with no select attribute, and with the
mode attribute set to #current. If the built-in rule was invoked with parameters, those parameters are passed on in the implicit xsl:apply-
templates instruction.

Example: Using a Built-In Template Rule

For example, suppose the stylesheet contains the following instruction:

<xsl:apply-templates select="title" mode="mm">
 <xsl:with-param name="init" select="10"/>
</xsl:apply-templates>

If there is no explicit template rule that matches the title element, then the following implicit rule is used:

<xsl:template match="title" mode="#all">
 <xsl:param name="init"/>
 <xsl:apply-templates mode="#current">
 <xsl:with-param name="init" select="$init"/>
 </xsl:apply-templates>
</xsl:template>

The built-in template rule for text and attribute nodes returns a text node containing the string value of the context node. It is effectively:

<xsl:template match="text()|@*" mode="#all">
 <xsl:value-of select="string(.)"/>
</xsl:template>

Note:

This text node may have a string value that is zero-length.

The built-in template rule for processing instructions and comments does nothing (it returns the empty sequence).

<xsl:template match="processing-instruction()|comment()" mode="#all"/>

The built-in template rule for namespace nodes is also to do nothing. There is no pattern that can match a namespace node, so the built-in
template rule is always used when xsl:apply-templates selects a namespace node.

The built-in template rules have lower import precedence than all other template rules. Thus, the stylesheet author can override a built-in
template rule by including an explicit template rule.

6.7 Overriding Template Rules

<!-- Category: instruction -->
<xsl:apply-imports>
 <!-- Content: xsl:with-param* -->
</xsl:apply-imports>

<!-- Category: instruction -->
<xsl:next-match>
 <!-- Content: (xsl:with-param | xsl:fallback)* -->

Page 44 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

</xsl:next-match>

A template rule that is being used to override another template rule (see 6.4 Conflict Resolution for Template Rules) can use the xsl:apply-
imports or xsl:next-match instruction to invoke the overridden template rule. The xsl:apply-imports instruction only considers template
rules in imported stylesheet modules; the xsl:next-match instruction considers all other template rules of lower import precedence and/or
priority. Both instructions will invoke the built-in template rule for the node (see 6.6 Built-in Template Rules) if no other template rule is found.

[DEFINITION: At any point in the processing of a stylesheet, there may be a current template rule. Whenever a template rule is chosen as a
result of evaluating xsl:apply-templates, xsl:apply-imports, or xsl:next-match, the template rule becomes the current template rule for
the evaluation of the rule's sequence constructor. When an xsl:for-each, xsl:for-each-group, or xsl:analyze-string instruction is
evaluated, or when evaluating a sequence constructor contained in an xsl:sort or xsl:key element, or when a stylesheet function is called
(see 10.3 Stylesheet Functions), the current template rule becomes null for the evaluation of that instruction or function.]

The current template rule is not affected by invoking named templates (see 10.1 Named Templates) or named attribute sets (see 10.2
Named Attribute Sets). While evaluating a global variable or the default value of a stylesheet parameter (see 9.5 Global Variables and
Parameters) the current template rule is null.

Note:

These rules ensure that when xsl:apply-imports or xsl:next-match is called, the context item is the same as when the current template
rule was invoked, and is always a node.

Both xsl:apply-imports and xsl:next-match search for a template rule that matches the context node, and that is applicable to the current
mode (see 6.5 Modes). In choosing a template rule, they use the usual criteria such as the priority and import precedence of the template
rules, but they consider as candidates only a subset of the template rules in the stylesheet. This subset differs between the two instructions:

The xsl:apply-imports instruction considers as candidates only those template rules contained in stylesheet levels that are
descendants in the import tree of the stylesheet level that contains the current template rule.

Note:
This is not the same as saying that the search considers all template rules whose import precedence is lower than that of the
current template rule.

The xsl:next-match instruction considers as candidates all those template rules that come after the current template rule in the
ordering of template rules implied by the conflict resolution rules given in 6.4 Conflict Resolution for Template Rules. That is, it
considers all template rules with lower import precedence than the current template rule, plus the template rules that are at the same
import precedence that have lower priority than the current template rule. If the processor has recovered from the error that occurs
when two matching template rules have the same import precedence and priority, then it also considers all matching template rules with
the same import precedence and priority that occur before the current template rule in declaration order.

Note:
As explained in 6.4 Conflict Resolution for Template Rules, a template rule whose match pattern contains multiple alternatives
separated by | is treated equivalently to a set of template rules, one for each alternative. This means that where the same node
matches more than one alternative, and the alternatives have different priority, it is possible for an xsl:next-match instruction to
cause the current template rule to be invoked recursively. This situation does not occur when the alternatives have the same
priority.

If no matching template rule is found that satisfies these criteria, the built-in template rule for the node kind is used (see 6.6 Built-in Template
Rules).

An xsl:apply-imports or xsl:next-match instruction may use xsl:with-param child elements to pass parameters to the chosen template rule
(see 10.1.1 Passing Parameters to Templates). It also passes on any tunnel parameters as described in 10.1.2 Tunnel Parameters.

[ERR XTDE0560] It is a non-recoverable dynamic error if xsl:apply-imports or xsl:next-match is evaluated when the current template rule is
null.

Example: Using xsl:apply-imports

For example, suppose the stylesheet doc.xsl contains a template rule for example elements:

<xsl:template match="example">
 <pre><xsl:apply-templates/></pre>
</xsl:template>

Another stylesheet could import doc.xsl and modify the treatment of example elements as follows:

<xsl:import href="doc.xsl"/>

<xsl:template match="example">
 <div style="border: solid red">
 <xsl:apply-imports/>
 </div>
</xsl:template>

The combined effect would be to transform an example into an element of the form:

<div style="border: solid red"><pre>...</pre></div>

An xsl:fallback instruction appearing as a child of an xsl:next-match instruction is ignored by an XSLT 2.0 processor, but can be used to
define fallback behavior when the stylesheet is processed by an XSLT 1.0 processor in forwards-compatible mode.

7 Repetition

Page 45 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

<!-- Category: instruction -->
<xsl:for-each
 select = expression>
 <!-- Content: (xsl:sort*, sequence-constructor) -->
</xsl:for-each>

The xsl:for-each instruction processes each item in a sequence of items, evaluating the sequence constructor within the xsl:for-each
instruction once for each item in that sequence.

The select attribute is REQUIRED, and the expression MUST evaluate to a sequence, called the input sequence. If there is an xsl:sort
element present (see 13 Sorting) the input sequence is sorted to produce a sorted sequence. Otherwise, the sorted sequence is the same
as the input sequence.

The xsl:for-each instruction contains a sequence constructor. The sequence constructor is evaluated once for each item in the sorted
sequence, with the focus set as follows:

The context item is the item being processed. If this is a node, it will also be the context node. If it is not a node, there will be no context
node: that is, any attempt to reference the context node will result in a non-recoverable dynamic error.
The context position is the position of this item in the sorted sequence.
The context size is the size of the sorted sequence (which is the same as the size of the input sequence).

For each item in the input sequence, evaluating the sequence constructor produces a sequence of items (see 5.7 Sequence Constructors).
These output sequences are concatenated; if item Q follows item P in the sorted sequence, then the result of evaluating the sequence
constructor with Q as the context item is concatenated after the result of evaluating the sequence constructor with P as the context item. The
result of the xsl:for-each instruction is the concatenated sequence of items.

Note:

With XSLT 1.0, the selected nodes were processed in document order. With XSLT 2.0, XPath expressions that would have been valid
under XPath 1.0 (such as path expressions and union expressions) will return a sequence of nodes that is already in document order,
so backwards compatibility is maintained.

Example: Using xsl:for-each

For example, given an XML document with this structure

<customers>
 <customer>
 <name>...</name>
 <order>...</order>
 <order>...</order>
 </customer>
 <customer>
 <name>...</name>
 <order>...</order>
 <order>...</order>
 </customer>
</customers>

the following would create an HTML document containing a table with a row for each customer element

<xsl:template match="/">
 <html>
 <head>
 <title>Customers</title>
 </head>
 <body>
 <table>
 <tbody>
 <xsl:for-each select="customers/customer">
 <tr>
 <th>
 <xsl:apply-templates select="name"/>
 </th>
 <xsl:for-each select="order">
 <td>
 <xsl:apply-templates/>
 </td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </tbody>
 </table>
 </body>
 </html>
</xsl:template>

8 Conditional Processing

There are two instructions in XSLT that support conditional processing: xsl:if and xsl:choose. The xsl:if instruction provides simple if-
then conditionality; the xsl:choose instruction supports selection of one choice when there are several possibilities.

8.1 Conditional Processing with xsl:if

<!-- Category: instruction -->
<xsl:if
 test = expression>

Page 46 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 <!-- Content: sequence-constructor -->
</xsl:if>

The xsl:if element has a mandatory test attribute, which specifies an expression. The content is a sequence constructor.

The result of the xsl:if instruction depends on the effective boolean valueXP of the expression in the test attribute. The rules for determining
the effective boolean value of an expression are given in [XPath 2.0]: they are the same as the rules used for XPath conditional expressions.

If the effective boolean value of the expression is true, then the sequence constructor is evaluated (see 5.7 Sequence Constructors), and the
resulting node sequence is returned as the result of the xsl:if instruction; otherwise, the sequence constructor is not evaluated, and the
empty sequence is returned.

Example: Using xsl:if

In the following example, the names in a group of names are formatted as a comma separated list:

<xsl:template match="namelist/name">
 <xsl:apply-templates/>
 <xsl:if test="not(position()=last())">, </xsl:if>
</xsl:template>

The following colors every other table row yellow:

<xsl:template match="item">
 <tr>
 <xsl:if test="position() mod 2 = 0">
 <xsl:attribute name="bgcolor">yellow</xsl:attribute>
 </xsl:if>
 <xsl:apply-templates/>
 </tr>
</xsl:template>

8.2 Conditional Processing with xsl:choose

<!-- Category: instruction -->
<xsl:choose>
 <!-- Content: (xsl:when+, xsl:otherwise?) -->
</xsl:choose>

<xsl:when
 test = expression>
 <!-- Content: sequence-constructor -->
</xsl:when>

<xsl:otherwise>
 <!-- Content: sequence-constructor -->
</xsl:otherwise>

The xsl:choose element selects one among a number of possible alternatives. It consists of a sequence of one or more xsl:when elements
followed by an optional xsl:otherwise element. Each xsl:when element has a single attribute, test, which specifies an expression. The
content of the xsl:when and xsl:otherwise elements is a sequence constructor.

When an xsl:choose element is processed, each of the xsl:when elements is tested in turn (that is, in the order that the elements appear in
the stylesheet), until one of the xsl:when elements is satisfied. If none of the xsl:when elements is satisfied, then the xsl:otherwise element
is considered, as described below.

An xsl:when element is satisfied if the effective boolean valueXP of the expression in its test attribute is true. The rules for determining the
effective boolean value of an expression are given in [XPath 2.0]: they are the same as the rules used for XPath conditional expressions.

The content of the first, and only the first, xsl:when element that is satisfied is evaluated, and the resulting sequence is returned as the result
of the xsl:choose instruction. If no xsl:when element is satisfied, the content of the xsl:otherwise element is evaluated, and the resulting
sequence is returned as the result of the xsl:choose instruction. If no xsl:when element is satisfied, and no xsl:otherwise element is
present, the result of the xsl:choose instruction is an empty sequence.

Only the sequence constructor of the selected xsl:when or xsl:otherwise instruction is evaluated. The test expressions for xsl:when
instructions after the selected one are not evaluated.

Example: Using xsl:choose

The following example enumerates items in an ordered list using arabic numerals, letters, or roman numerals depending on the depth to
which the ordered lists are nested.

<xsl:template match="orderedlist/listitem">
 <fo:list-item indent-start='2pi'>
 <fo:list-item-label>
 <xsl:variable name="level"
 select="count(ancestor::orderedlist) mod 3"/>
 <xsl:choose>
 <xsl:when test='$level=1'>
 <xsl:number format="i"/>
 </xsl:when>
 <xsl:when test='$level=2'>
 <xsl:number format="a"/>
 </xsl:when>

Page 47 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 <xsl:otherwise>
 <xsl:number format="1"/>
 </xsl:otherwise>
 </xsl:choose>
 <xsl:text>. </xsl:text>
 </fo:list-item-label>
 <fo:list-item-body>
 <xsl:apply-templates/>
 </fo:list-item-body>
 </fo:list-item>
</xsl:template>

9 Variables and Parameters

[DEFINITION: The two elements xsl:variable and xsl:param are referred to as variable-binding elements].

[DEFINITION: The xsl:variable element declares a variable, which may be a global variable or a local variable.]

[DEFINITION: The xsl:param element declares a parameter, which may be a stylesheet parameter, a template parameter, or a function
parameter. A parameter is a variable with the additional property that its value can be set by the caller when the stylesheet, the template, or
the function is invoked.]

[DEFINITION: A variable is a binding between a name and a value. The value of a variable is any sequence (of nodes and/or atomic values),
as defined in [Data Model].]

9.1 Variables

<!-- Category: declaration -->
<!-- Category: instruction -->
<xsl:variable
 name = qname
 select? = expression
 as? = sequence-type>
 <!-- Content: sequence-constructor -->
</xsl:variable>

The xsl:variable element has a REQUIRED name attribute, which specifies the name of the variable. The value of the name attribute is a
QName, which is expanded as described in 5.1 Qualified Names.

The xsl:variable element has an optional as attribute, which specifies the required type of the variable. The value of the as attribute is a
SequenceType XP, as defined in [XPath 2.0].

[DEFINITION: The value of the variable is computed using the expression given in the select attribute or the contained sequence constructor,
as described in 9.3 Values of Variables and Parameters. This value is referred to as the supplied value of the variable.] If the xsl:variable
element has a select attribute, then the sequence constructor MUST be empty.

If the as attribute is specified, then the supplied value of the variable is converted to the required type, using the function conversion rules.

[ERR XTTE0570] It is a type error if the supplied value of a variable cannot be converted to the required type.

If the as attribute is omitted, the supplied value of the variable is used directly, and no conversion takes place.

9.2 Parameters

<!-- Category: declaration -->
<xsl:param
 name = qname
 select? = expression
 as? = sequence-type
 required? = "yes" | "no"
 tunnel? = "yes" | "no">
 <!-- Content: sequence-constructor -->
</xsl:param>

The xsl:param element may be used as a child of xsl:stylesheet, to define a parameter to the transformation; or as a child of xsl:template
to define a parameter to a template, which may be supplied when the template is invoked using xsl:call-template, xsl:apply-templates,
xsl:apply-imports or xsl:next-match; or as a child of xsl:function to define a parameter to a stylesheet function, which may be supplied
when the function is called from an XPath expression.

The xsl:param element has a REQUIRED name attribute, which specifies the name of the parameter. The value of the name attribute is a
QName, which is expanded as described in 5.1 Qualified Names.

[ERR XTSE0580] It is a static error if two parameters of a template or of a stylesheet function have the same name.

Note:

For rules concerning stylesheet parameters, see 9.5 Global Variables and Parameters. Local variables may shadow template
parameters and function parameters: see 9.7 Scope of Variables.

The supplied value of the parameter is the value supplied by the caller. If no value was supplied by the caller, and if the parameter is not
mandatory, then the supplied value is computed using the expression given in the select attribute or the contained sequence constructor, as
described in 9.3 Values of Variables and Parameters. If the xsl:param element has a select attribute, then the sequence constructor MUST
be empty.

Note:

This specification does not dictate whether and when the default value of a parameter is evaluated. For example, if the default is

Page 48 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

specified as <xsl:param name="p"><foo/></xsl:param>, then it is not specified whether a distinct foo element node will be created on
each invocation of the template, or whether the same foo element node will be used for each invocation. However, it is permissible for
the default value to depend on the values of other parameters, or on the evaluation context, in which case the default must effectively be
evaluated on each invocation.

The xsl:param element has an optional as attribute, which specifies the required type of the parameter. The value of the as attribute is a
SequenceType XP, as defined in [XPath 2.0].

If the as attribute is specified, then the supplied value of the parameter is converted to the required type, using the function conversion rules.

[ERR XTTE0590] It is a type error if the conversion of the supplied value of a parameter to its required type fails.

If the as attribute is omitted, the supplied value of the parameter is used directly, and no conversion takes place.

The optional required attribute may be used to indicate that a parameter is mandatory. This attribute may be specified for stylesheet
parameters and for template parameters; it MUST NOT be specified for function parameters, which are always mandatory. A parameter is
mandatory if it is a function parameter or if the required attribute is present and has the value yes. Otherwise, the parameter is optional. If
the parameter is mandatory, then the xsl:param element MUST be empty and MUST NOT have a select attribute.

[ERR XTTE0600] If a default value is given explicitly, that is, if there is either a select attribute or a non-empty sequence constructor, then it is
a type error if the default value cannot be converted to the required type, using the function conversion rules.

If an optional parameter has no select attribute and has an empty sequence constructor, and if there is no as attribute, then the default
value of the parameter is a zero length string.

[ERR XTDE0610] If an optional parameter has no select attribute and has an empty sequence constructor, and if there is an as attribute, then
the default value of the parameter is an empty sequence. If the empty sequence is not a valid instance of the required type defined in the as
attribute, then the parameter is treated as a required parameter, which means that it is a non-recoverable dynamic error if the caller supplies
no value for the parameter.

Note:

The effect of these rules is that specifying <xsl:param name="p" as="xs:date" select="2"/> is an error, but if the default value of the
parameter is never used, then the processor has discretion whether or not to report the error. By contrast, <xsl:param name="p"
as="xs:date"/> is treated as if required="yes" had been specified: the empty sequence is not a valid instance of xs:date, so in effect
there is no default value and the parameter is therefore treated as being mandatory.

The optional tunnel attribute may be used to indicate that a parameter is a tunnel parameter. The default is no; the value yes may be
specified only for template parameters. Tunnel parameters are described in 10.1.2 Tunnel Parameters

9.3 Values of Variables and Parameters

A variable-binding element may specify the supplied value of the variable or parameter in four different ways.

If the variable-binding element has a select attribute, then the value of the attribute MUST be an expression and the supplied value of
the variable is the value that results from evaluating the expression. In this case, the content of the variable-binding element MUST be
empty.
If the variable-binding element has empty content and has neither a select attribute nor an as attribute, then the supplied value of the
variable is a zero-length string. Thus

<xsl:variable name="x"/>

is equivalent to

<xsl:variable name="x" select="''"/>

If a variable-binding element has no select attribute and has non-empty content (that is, the variable-binding element has one or more
child nodes), and has no as attribute, then the content of the variable-binding element specifies the supplied value. The content of the
variable-binding element is a sequence constructor; a new document is constructed with a document node having as its children the
sequence of nodes that results from evaluating the sequence constructor and then applying the rules given in 5.7.1 Constructing
Complex Content. The value of the variable is then a singleton sequence containing this document node. For further information, see
9.4 Creating implicit document nodes.
If a variable-binding element has an as attribute but no select attribute, then the supplied value is the sequence that results from
evaluating the (possibly empty) sequence constructor contained within the variable-binding element (see 5.7 Sequence Constructors).

These combinations are summarized in the table below.

select
attribute as attribute content Effect

present absent empty Value is obtained by evaluating the select attribute

present present empty Value is obtained by evaluating the select attribute, adjusted to the type required by
the as attribute

present absent present Static error

present present present Static error

absent absent empty Value is a zero-length string

absent present empty Value is an empty sequence, provided the as attribute permits an empty sequence

absent absent present Value is a document node whose content is obtained by evaluating the sequence
constructor

Page 49 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

[ERR XTSE0620] It is a static error if a variable-binding element has a select attribute and has non-empty content.

Example: Values of Variables

The value of the following variable is the sequence of integers (1, 2, 3):

<xsl:variable name="i" as="xs:integer*" select="1 to 3"/>

The value of the following variable is an integer, assuming that the attribute @size exists, and is annotated either as an integer, or as
xs:untypedAtomic:

<xsl:variable name="i" as="xs:integer" select="@size"/>

The value of the following variable is a zero-length string:

<xsl:variable name="z"/>

The value of the following variable is document node containing an empty element as a child:

<xsl:variable name="doc"><c/></xsl:variable>

The value of the following variable is sequence of integers (2, 4, 6):

<xsl:variable name="seq" as="xs:integer*">
 <xsl:for-each select="1 to 3">
 <xsl:sequence select=".*2"/>
 </xsl:for-each>
</xsl:variable>

The value of the following variable is sequence of parentless attribute nodes:

<xsl:variable name="attset" as="attribute()+">
 <xsl:attribute name="x">2</xsl:attribute>
 <xsl:attribute name="y">3</xsl:attribute>
 <xsl:attribute name="z">4</xsl:attribute>
</xsl:variable>

The value of the following variable is an empty sequence:

<xsl:variable name="empty" as="empty-sequence()"/>

The actual value of the variable depends on the supplied value, as described above, and the required type, which is determined by the value
of the as attribute.

Example: Pitfalls with Numeric Predicates

When a variable is used to select nodes by position, be careful not to do:

<xsl:variable name="n">2</xsl:variable>
...
<xsl:value-of select="td[$n]"/>

This will output the values of all the td elements, space-separated (or in backwards compatibility mode, the value of the first td
element), because the variable n will be bound to a node, not a number. Instead, do one of the following:

<xsl:variable name="n" select="2"/>
...
<xsl:value-of select="td[$n]"/>

or

<xsl:variable name="n">2</xsl:variable>
...
<xsl:value-of select="td[position()=$n]"/>

or

<xsl:variable name="n" as="xs:integer">2</xsl:variable>
...
<xsl:value-of select="td[$n]"/>

absent present present Value is obtained by evaluating the sequence constructor, adjusted to the type required
by the as attribute

Page 50 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

9.4 Creating implicit document nodes

A document node is created implicitly when evaluating an xsl:variable, xsl:param, or xsl:with-param element that has non-empty content
and that has no as attribute. This element is referred to as the variable-binding element. The value of the variable is a single node, the
document node of the temporary tree. The content of the document node is formed from the result of evaluating the sequence constructor
contained within the variable-binding element, as described in 5.7.1 Constructing Complex Content.

Note:

The construct:

<xsl:variable name="tree">
 <a/>
</xsl:variable>

can be regarded as a shorthand for:

<xsl:variable name="tree" as="document-node()">
 <xsl:document validation="preserve">
 <a/>
 </xsl:document>
</xsl:variable>

The base URI of the document node is taken from the base URI of the variable binding element in the stylesheet. (See Section 5.2 base-uri
AccessorDM in [Data Model])

No document-level validation takes place (which means, for example, that there is no checking that ID values are unique). However, type
annotations on nodes within the new tree are copied unchanged.

Note:

The base URI of other nodes in the tree is determined by the rules for constructing complex content. The effect of these rules is that the
base URI of a node in the temporary tree is determined as if all the nodes in the temporary tree came from a single entity whose URI
was the base URI of the variable-binding element. Thus, the base URI of the document node will be equal to the base URI of the
variable-binding element; an xml:base attribute within the temporary tree will change the base URI for its parent element and that
element's descendants, just as it would within a document constructed by parsing.

The document-uri and unparsed-entities properties of the new document node are set to empty.

A temporary tree is available for processing in exactly the same way as any source document. For example, its nodes are accessible using
path expressions, and they can be processed using instructions such as xsl:apply-templates and xsl:for-each. Also, the key and id FO
functions can be used to find nodes within a temporary tree rooted at a document node, provided that at the time the function is called, the
context item is a node within the temporary tree.

Example: Two-Phase Transformation

For example, the following stylesheet uses a temporary tree as the intermediate result of a two-phase transformation, using different
modes for the two phases (see 6.5 Modes). Typically, the template rules in module phase1.xsl will be declared with mode="phase1",
while those in module phase2.xsl will be declared with mode="phase2":

<xsl:stylesheet
 version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:import href="phase1.xsl"/>
<xsl:import href="phase2.xsl"/>

<xsl:variable name="intermediate">
 <xsl:apply-templates select="/" mode="phase1"/>
</xsl:variable>

<xsl:template match="/">
 <xsl:apply-templates select="$intermediate" mode="phase2"/>
</xsl:template>

</xsl:stylesheet>

Note:

The algorithm for matching nodes against template rules is exactly the same regardless which tree the nodes come from. If different
template rules are to be used when processing different trees, then unless nodes from different trees can be distinguished by means of
patterns, it is a good idea to use modes to ensure that each tree is processed using the appropriate set of template rules.

9.5 Global Variables and Parameters

Both xsl:variable and xsl:param are allowed as declaration elements: that is, they may appear as children of the xsl:stylesheet element.

[DEFINITION: A top-level variable-binding element declares a global variable that is visible everywhere (except where it is shadowed by
another binding).]

[DEFINITION: A top-level xsl:param element declares a stylesheet parameter. A stylesheet parameter is a global variable with the additional
property that its value can be supplied by the caller when a transformation is initiated.] As described in 9.2 Parameters, a stylesheet
parameter may be declared as being mandatory, or may have a default value specified for use when no value is supplied by the caller. The

Page 51 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

mechanism by which the caller supplies a value for a stylesheet parameter is implementation-defined. An XSLT processor MUST provide
such a mechanism.

It is an error if no value is supplied for a mandatory stylesheet parameter [see ERR XTDE0050].

If a stylesheet contains more than one binding for a global variable of a particular name, then the binding with the highest import precedence
is used.

[ERR XTSE0630] It is a static error if a stylesheet contains more than one binding of a global variable with the same name and same import
precedence, unless it also contains another binding with the same name and higher import precedence.

For a global variable or the default value of a stylesheet parameter, the expression or sequence constructor specifying the variable value is
evaluated with a singleton focus based on the root node of the tree containing the initial context node. An XPath error will be reported if the
evaluation of a global variable or parameter references the context item, context position, or context size when no initial context node is
supplied. The values of other components of the dynamic context are the initial values as defined in 5.4.3 Initializing the Dynamic Context
and 5.4.4 Additional Dynamic Context Components used by XSLT.

Example: A Stylesheet Parameter

The following example declares a global parameter para-font-size, which is referenced in an attribute value template.

<xsl:param name="para-font-size" as="xs:string">12pt</xsl:param>

<xsl:template match="para">
 <fo:block font-size="{$para-font-size}">
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

The implementation must provide a mechanism allowing the user to supply a value for the parameter para-font-size when invoking
the stylesheet; the value 12pt acts as a default.

9.6 Local Variables and Parameters

[DEFINITION: As well as being allowed as declaration elements, the xsl:variable element is also allowed in sequence constructors. Such a
variable is known as a local variable.]

[DEFINITION: An xsl:param element may appear as a child of an xsl:template element, before any non-xsl:param children of that element.
Such a parameter is known as a template parameter. A template parameter is a local variable with the additional property that its value can
be set when the template is called, using any of the instructions xsl:call-template, xsl:apply-templates, xsl:apply-imports, or xsl:next-
match.]

[DEFINITION: An xsl:param element may appear as a child of an xsl:function element, before any non-xsl:param children of that element.
Such a parameter is known as a function parameter. A function parameter is a local variable with the additional property that its value can
be set when the function is called, using a function call in an XPath expression.]

The result of evaluating a local xsl:variable or xsl:param element (that is, the contribution it makes to the result of the sequence
constructor it is part of) is an empty sequence.

9.7 Scope of Variables

For any variable-binding element, there is a region (more specifically, a set of element nodes) of the stylesheet within which the binding is
visible. The set of variable bindings in scope for an XPath expression consists of those bindings that are visible at the point in the stylesheet
where the expression occurs.

A global variable binding element is visible everywhere in the stylesheet (including other stylesheet modules) except within the xsl:variable
or xsl:param element itself and any region where it is shadowed by another variable binding.

A local variable binding element is visible for all following siblings and their descendants, with two exceptions: it is not visible in any region
where it is shadowed by another variable binding, and it is not visible within the subtree rooted at an xsl:fallback instruction that is a sibling
of the variable binding element. The binding is not visible for the xsl:variable or xsl:param element itself.

[DEFINITION: A binding shadows another binding if the binding occurs at a point where the other binding is visible, and the bindings have the
same name.] It is not an error if a binding established by a local xsl:variable or xsl:param shadows a global binding. In this case, the
global binding will not be visible in the region of the stylesheet where it is shadowed by the other binding.

Example: Local Variable Shadowing a Global Variable

The following is allowed:

<xsl:param name="x" select="1"/>
<xsl:template name="foo">
 <xsl:variable name="x" select="2"/>
</xsl:template>

It is also not an error if a binding established by a local xsl:variable element shadows a binding established by another local xsl:variable
or xsl:param.

Page 52 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Example: Misuse of Variable Shadowing

The following is not an error, but the effect is probably not what was intended. The template outputs <x value="1"/>, because the
declaration of the inner variable named $x has no effect on the value of the outer variable named $x.

<xsl:variable name="x" select="1"/>
<xsl:template name="foo">
 <xsl:for-each select="1 to 5">
 <xsl:variable name="x" select="$x+1"/>
 </xsl:for-each>
 <x value="{$x}"/>
</xsl:template>

Note:

Once a variable has been given a value, the value cannot subsequently be changed. XSLT does not provide an equivalent to the
assignment operator available in many procedural programming languages.

This is because an assignment operator would make it harder to create an implementation that processes a document other than in a
batch-like way, starting at the beginning and continuing through to the end.

As well as global variables and local variables, an XPath expression may also declare range variables for use locally within an expression.
For details, see [XPath 2.0].

Where a reference to a variable occurs in an XPath expression, it is resolved first by reference to range variables that are in scope, then by
reference to local variables and parameters, and finally by reference to global variables and parameters. A range variable may shadow a
local variable or a global variable. XPath also allows a range variable to shadow another range variable.

9.8 Circular Definitions

[DEFINITION: A circularity is said to exist if a construct such as a global variable, an attribute set, or a key is defined in terms of itself. For
example, if the expression or sequence constructor specifying the value of a global variable X references a global variable Y, then the value
for Y MUST be computed before the value of X. A circularity exists if it is impossible to do this for all global variable definitions.]

Example: Circular Variable Definitions

The following two declarations create a circularity:

<xsl:variable name="x" select="$y+1"/>
<xsl:variable name="y" select="$x+1"/>

Example: Circularity involving Variables and Functions

The definition of a global variable can be circular even if no other variable is involved. For example the following two declarations (see
10.3 Stylesheet Functions for an explanation of the xsl:function element) also create a circularity:

<xsl:variable name="x" select="my:f()"/>

<xsl:function name="my:f">
 <xsl:sequence select="$x"/>
</xsl:function>

Example: Circularity involving Variables and Templates

The definition of a variable is also circular if the evaluation of the variable invokes an xsl:apply-templates instruction and the variable
is referenced in the pattern used in the match attribute of any template rule in the stylesheet. For example the following definition is
circular:

<xsl:variable name="x">
 <xsl:apply-templates select="//param[1]"/>
</xsl:variable>

<xsl:template match="param[$x]">1</xsl:template>

Example: Circularity involving Variables and Keys

Similarly, a variable definition is circular if it causes a call on the key function, and the definition of that key refers to that variable in its
match or use attributes. So the following definition is circular:

Page 53 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

<xsl:variable name="x" select="my:f(10)"/>

<xsl:function name="my:f">
 <xsl:param name="arg1"/>
 <xsl:sequence select="key('k', $arg1)"/>
</xsl:function>

<xsl:key name="k" match="item[@code=$x]" use="@desc"/>

[ERR XTDE0640] In general, a circularity in a stylesheet is a non-recoverable dynamic error. However, as with all other dynamic errors, an
implementation will signal the error only if it actually executes the instructions and expressions that participate in the circularity. Because
different implementations may optimize the execution of a stylesheet in different ways, it is implementation-dependent whether a particular
circularity will actually be signaled.

For example, in the following declarations, the function declares a local variable $b, but it returns a result that does not require the variable to
be evaluated. It is implementation-dependent whether the value is actually evaluated, and it is therefore implementation-dependent whether
the circularity is signaled as an error:

<xsl:variable name="x" select="my:f(1)/>

<xsl:function name="my:f">
 <xsl:param name="a"/>
 <xsl:variable name="b" select="$x"/>
 <xsl:sequence select="$a + 2"/>
</xsl:function>

Circularities usually involve global variables or parameters, but they can also exist between key definitions (see 16.3 Keys), between named
attribute sets (see 10.2 Named Attribute Sets), or between any combination of these constructs. For example, a circularity exists if a key
definition invokes a function that references an attribute set that calls the key function, supplying the name of the original key definition as an
argument.

Circularity is not the same as recursion. Stylesheet functions (see 10.3 Stylesheet Functions) and named templates (see 10.1 Named
Templates) may call other functions and named templates without restriction. With careless coding, recursion may be non-terminating.
Implementations are REQUIRED to signal circularity as a dynamic error, but they are not REQUIRED to detect non-terminating recursion.

10 Callable Components

This section describes three constructs that can be used to provide subroutine-like functionality that can be invoked from anywhere in the
stylesheet: named templates (see 10.1 Named Templates), named attribute sets (see 10.2 Named Attribute Sets) and stylesheet functions
(see 10.3 Stylesheet Functions).

10.1 Named Templates

<!-- Category: instruction -->
<xsl:call-template
 name = qname>
 <!-- Content: xsl:with-param* -->
</xsl:call-template>

[DEFINITION: Templates can be invoked by name. An xsl:template element with a name attribute defines a named template.] The value of
the name attribute is a QName, which is expanded as described in 5.1 Qualified Names. If an xsl:template element has a name attribute, it
may, but need not, also have a match attribute. An xsl:call-template instruction invokes a template by name; it has a REQUIRED name
attribute that identifies the template to be invoked. Unlike xsl:apply-templates, the xsl:call-template instruction does not change the
focus.

The match, mode and priority attributes on an xsl:template element have no effect when the template is invoked by an xsl:call-template
instruction. Similarly, the name attribute on an xsl:template element has no effect when the template is invoked by an xsl:apply-templates
instruction.

[ERR XTSE0650] It is a static error if a stylesheet contains an xsl:call-template instruction whose name attribute does not match the name
attribute of any xsl:template in the stylesheet.

[ERR XTSE0660] It is a static error if a stylesheet contains more than one template with the same name and the same import precedence,
unless it also contains a template with the same name and higher import precedence.

The target template for an xsl:call-template instruction is the template whose name attribute matches the name attribute of the xsl:call-
template instruction and that has higher import precedence than any other template with this name. The result of evaluating an xsl:call-
template instruction is the sequence produced by evaluating the sequence constructor contained in its target template (see 5.7 Sequence
Constructors).

10.1.1 Passing Parameters to Templates

<xsl:with-param
 name = qname
 select? = expression
 as? = sequence-type
 tunnel? = "yes" | "no">
 <!-- Content: sequence-constructor -->
</xsl:with-param>

Parameters are passed to templates using the xsl:with-param element. The REQUIRED name attribute specifies the name of the template
parameter (the variable the value of whose binding is to be replaced). The value of the name attribute is a QName, which is expanded as
described in 5.1 Qualified Names.

xsl:with-param is allowed within xsl:call-template, xsl:apply-templates, xsl:apply-imports, and xsl:next-match.

Page 54 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

[ERR XTSE0670] It is a static error if a single xsl:call-template, xsl:apply-templates, xsl:apply-imports, or xsl:next-match element
contains two or more xsl:with-param elements with matching name attributes.

The value of the parameter is specified in the same way as for xsl:variable and xsl:param (see 9.3 Values of Variables and Parameters),
taking account of the values of the select and as attributes and the content of the xsl:with-param element, if any.

Note:

It is possible to have an as attribute on the xsl:with-param element that differs from the as attribute on the corresponding xsl:param
element describing the formal parameters of the called template.

In this situation, the supplied value of the parameter will first be processed according to the rules of the as attribute on the xsl:with-
param element, and the resulting value will then be further processed according to the rules of the as attribute on the xsl:param element.

For example, suppose the supplied value is a node with type annotation xs:untypedAtomic, and the xsl:with-param element specifies
as="xs:integer", while the xsl:param element specifies as="xs:double". Then the node will first be atomized and the resulting untyped
atomic value will be cast to xs:integer. If this succeeds, the xs:integer will then be promoted to an xs:double.

The focus used for computing the value specified by the xsl:with-param element is the same as that used for the xsl:apply-templates,
xsl:apply-imports, xsl:next-match, or xsl:call-template element within which it occurs.

[ERR XTSE0680] In the case of xsl:call-template, it is a static error to pass a non-tunnel parameter named x to a template that does not
have a template parameter named x, unless backwards compatible behavior is enabled for the xsl:call-template instruction. This is not an
error in the case of xsl:apply-templates, xsl:apply-imports, and xsl:next-match; in these cases the parameter is simply ignored.

The optional tunnel attribute may be used to indicate that a parameter is a tunnel parameter. The default is no. Tunnel parameters are
described in 10.1.2 Tunnel Parameters

[ERR XTSE0690] It is a static error if a template that is invoked using xsl:call-template declares a template parameter specifying
required="yes" and not specifying tunnel="yes", if no value for this parameter is supplied by the calling instruction.

[ERR XTDE0700] In other cases, it is a non-recoverable dynamic error if the template that is invoked declares a template parameter with
required="yes" and no value for this parameter is supplied by the calling instruction.

Example: A Named Template

This example defines a named template for a numbered-block with an argument to control the format of the number.

<xsl:template name="numbered-block">
 <xsl:param name="format">1. </xsl:param>
 <fo:block>
 <xsl:number format="{$format}"/>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

<xsl:template match="ol//ol/li">
 <xsl:call-template name="numbered-block">
 <xsl:with-param name="format">a. </xsl:with-param>
 </xsl:call-template>
</xsl:template>

Note:

Arguments to stylesheet functions are supplied as part of an XPath function call: see 10.3 Stylesheet Functions

10.1.2 Tunnel Parameters

[DEFINITION: A parameter passed to a template may be defined as a tunnel parameter. Tunnel parameters have the property that they are
automatically passed on by the called template to any further templates that it calls, and so on recursively.] Tunnel parameters thus allow
values to be set that are accessible during an entire phase of stylesheet processing, without the need for each template that is used during
that phase to be aware of the parameter.

Note:

Tunnel parameters are conceptually similar to dynamically-scoped variables in some functional programming languages.

A tunnel parameter is created by using an xsl:with-param element that specifies tunnel="yes". A template that requires access to the value
of a tunnel parameter must declare it using an xsl:param element that also specifies tunnel="yes".

On any template call using an xsl:apply-templates, xsl:call-template, xsl:apply-imports or xsl:next-match instruction, a set of tunnel
parameters is passed from the calling template to the called template. This set consists of any parameters explicitly created using
<xsl:with-param tunnel="yes">, overlaid on a base set of tunnel parameters. If the xsl:apply-templates, xsl:call-template, xsl:apply-
imports or xsl:next-match instruction has an xsl:template declaration as an ancestor element in the stylesheet, then the base set consists
of the tunnel parameters that were passed to that template; otherwise (for example, if the instruction is within a global variable declaration,
an attribute set declaration, or a stylesheet function), the base set is empty. If a parameter created using <xsl:with-param tunnel="yes">
has the same expanded-QName as a parameter in the base set, then the parameter created using xsl:with-param overrides the parameter
in the base set; otherwise, the parameter created using xsl:with-param is added to the base set.

When a template accesses the value of a tunnel parameter by declaring it with xsl:param tunnel="yes", this does not remove the
parameter from the base set of tunnel parameters that is passed on to any templates called by this template.

Two sibling xsl:with-param elements must have distinct parameter names, even if one is a tunnel parameter and the other is not. Equally,

Page 55 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

two sibling xsl:param elements representing template parameters must have distinct parameter names, even if one is a tunnel parameter
and the other is not. However, the tunnel parameters that are implicitly passed in a template call may have names that duplicate the names
of non-tunnel parameters that are explicitly passed on the same call.

Tunnel parameters are not passed in calls to stylesheet functions.

All other options of xsl:with-param and xsl:param are available with tunnel parameters just as with non-tunnel parameters. For example,
parameters may be declared as mandatory or optional, a default value may be specified, and a required type may be specified. If any
conversion is required from the supplied value of a tunnel parameter to the required type specified in xsl:param, then the converted value is
used within the receiving template, but the value that is passed on in any further template calls is the original supplied value before
conversion. Equally, any default value is local to the template: specifying a default value for a tunnel parameter does not change the set of
tunnel parameters that is passed on in further template calls.

The set of tunnel parameters that is passed to the initial template is empty.

Tunnel parameters are passed unchanged through a built-in template rule (see 6.6 Built-in Template Rules).

Example: Using Tunnel Parameters

Suppose that the equations in a scientific paper are to be sequentially numbered, but that the format of the number depends on the
context in which the equations appear. It is possible to reflect this using a rule of the form:

<xsl:template match="equation">
 <xsl:param name="equation-format" select="'(1)'" tunnel="yes"/>
 <xsl:number level="any" format="{$equation-format}"/>
</xsl:template>

At any level of processing above this level, it is possible to determine how the equations will be numbered, for example:

<xsl:template match="appendix">
 ...
 <xsl:apply-templates>
 <xsl:with-param name="equation-format" select="'[i]'" tunnel="yes"/>
 </xsl:apply-templates>
 ...
</xsl:template>

The parameter value is passed transparently through all the intermediate layers of template rules until it reaches the rule with
match="equation". The effect is similar to using a global variable, except that the parameter can take different values during different
phases of the transformation.

10.2 Named Attribute Sets

<!-- Category: declaration -->
<xsl:attribute-set
 name = qname
 use-attribute-sets? = qnames>
 <!-- Content: xsl:attribute* -->
</xsl:attribute-set>

[DEFINITION: The xsl:attribute-set element defines a named attribute set: that is, a collection of attribute definitions that can be used
repeatedly on different constructed elements.]

The REQUIRED name attribute specifies the name of the attribute set. The value of the name attribute is a QName, which is expanded as
described in 5.1 Qualified Names. The content of the xsl:attribute-set element consists of zero or more xsl:attribute instructions that
are evaluated to produce the attributes in the set.

The result of evaluating an attribute set is a sequence of attribute nodes. Evaluating the same attribute set more than once can produce
different results, because although an attribute set does not have parameters, it may contain expressions or instructions whose value
depends on the evaluation context.

Attribute sets are used by specifying a use-attribute-sets attribute on the xsl:element or xsl:copy instruction, or by specifying an
xsl:use-attribute-sets attribute on a literal result element. An attribute set may be defined in terms of other attribute sets by using the use-
attribute-sets attribute on the xsl:attribute-set element itself. The value of the [xsl:]use-attribute-sets attribute is in each case a
whitespace-separated list of names of attribute sets. Each name is specified as a QName, which is expanded as described in 5.1 Qualified
Names.

Specifying a use-attribute-sets attribute is broadly equivalent to adding xsl:attribute instructions for each of the attributes in each of the
named attribute sets to the beginning of the content of the instruction with the [xsl:]use-attribute-sets attribute, in the same order in
which the names of the attribute sets are specified in the use-attribute-sets attribute.

More formally, an xsl:use-attribute-sets attribute is expanded using the following recursive algorithm, or any algorithm that produces the
same results:

The value of the attribute is tokenized as a list of QNames.
Each QName in the list is processed, in order, as follows:

The QName must match the name attribute of one or more xsl:attribute-set declarations in the stylesheet.
Each xsl:attribute-set declaration whose name matches is processed as follows. Where two such declarations have different
import precedence, the one with lower import precedence is processed first. Where two declarations have the same import
precedence, they are processed in declaration order.

If the xsl:attribute-set declaration has a use-attribute-sets attribute, the attribute is expanded by applying this

Page 56 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

algorithm recursively.
If the xsl:attribute-set declaration contains one or more xsl:attribute instructions, these instructions are evaluated
(following the rules for evaluating a sequence constructor: see 5.7 Sequence Constructors) to produce a sequence of
attribute nodes. These attribute nodes are appended to the result sequence.

The xsl:attribute instructions are evaluated using the same focus as is used for evaluating the element that is the parent of the [xsl:]
use-attribute-sets attribute forming the initial input to the algorithm. However, the static context for the evaluation depends on the position
of the xsl:attribute instruction in the stylesheet: thus, only local variables declared within an xsl:attribute instruction, and global
variables, are visible.

The set of attribute nodes produced by expanding xsl:use-attribute-sets may include several attributes with the same name. When the
attributes are added to an element node, only the last of the duplicates will take effect.

The way in which each instruction uses the results of expanding the [xsl:]use-attribute-sets attribute is described in the specification for
the relevant instruction: see 11.1 Literal Result Elements, 11.2 Creating Element Nodes Using xsl:element , and 11.9 Copying Nodes.

[ERR XTSE0710] It is a static error if the value of the use-attribute-sets attribute of an xsl:copy, xsl:element, or xsl:attribute-set
element, or the xsl:use-attribute-sets attribute of a literal result element, is not a whitespace-separated sequence of QNames, or if it
contains a QName that does not match the name attribute of any xsl:attribute-set declaration in the stylesheet.

[ERR XTSE0720] It is a static error if an xsl:attribute-set element directly or indirectly references itself via the names contained in the use-
attribute-sets attribute.

Each attribute node produced by expanding an attribute set has a type annotation determined by the rules for the xsl:attribute instruction
that created the attribute node: see 11.3.1 Setting the Type Annotation for a Constructed Attribute Node. These type annotations may be
preserved, stripped, or replaced as determined by the rules for the instruction that creates the element in which the attributes are used.

Attribute sets are used as follows:

The xsl:copy and xsl:element instructions have an use-attribute-sets attribute. The sequence of attribute nodes produced by
evaluating this attribute is prepended to the sequence produced by evaluating the sequence constructor contained within the
instruction.
Literal result elements allow an xsl:use-attribute-sets attribute, which is evaluated in the same way as the use-attribute-sets
attribute of xsl:element and xsl:copy. The sequence of attribute nodes produced by evaluating this attribute is prepended to the
sequence of attribute nodes produced by evaluating the attributes of the literal result element, which in turn is prepended to the
sequence produced by evaluating the sequence constructor contained with the literal result element.

Example: Using Attribute Sets

The following example creates a named attribute set title-style and uses it in a template rule.

<xsl:template match="chapter/heading">
 <fo:block font-stretch="condensed" xsl:use-attribute-sets="title-style">
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

<xsl:attribute-set name="title-style">
 <xsl:attribute name="font-size">12pt</xsl:attribute>
 <xsl:attribute name="font-weight">bold</xsl:attribute>
</xsl:attribute-set>

Example: Overriding Attributes in an Attribute Set

The following example creates a named attribute set base-style and uses it in a template rule with multiple specifications of the
attributes:

font-family

is specified only in the attribute set

font-size

is specified in the attribute set, is specified on the literal result element, and in an xsl:attribute instruction

font-style

is specified in the attribute set, and on the literal result element

font-weight

is specified in the attribute set, and in an xsl:attribute instruction

Stylesheet fragment:

<xsl:attribute-set name="base-style">
 <xsl:attribute name="font-family">Univers</xsl:attribute>
 <xsl:attribute name="font-size">10pt</xsl:attribute>
 <xsl:attribute name="font-style">normal</xsl:attribute>
 <xsl:attribute name="font-weight">normal</xsl:attribute>

Page 57 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

</xsl:attribute-set>

<xsl:template match="o">
 <fo:block xsl:use-attribute-sets="base-style"
 font-size="12pt"
 font-style="italic">
 <xsl:attribute name="font-size">14pt</xsl:attribute>
 <xsl:attribute name="font-weight">bold</xsl:attribute>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

Result:

<fo:block font-family="Univers"
 font-size="14pt"
 font-style="italic"
 font-weight="bold">
...
</fo:block>

10.3 Stylesheet Functions

[DEFINITION: An xsl:function declaration declares the name, parameters, and implementation of a stylesheet function that can be called
from any XPath expression within the stylesheet.]

<!-- Category: declaration -->
<xsl:function
 name = qname
 as? = sequence-type
 override? = "yes" | "no">
 <!-- Content: (xsl:param*, sequence-constructor) -->
</xsl:function>

The xsl:function declaration defines a stylesheet function that can be called from any XPath expression used in the stylesheet (including an
XPath expression used within a predicate in a pattern). The name attribute specifies the name of the function. The value of the name attribute is
a QName, which is expanded as described in 5.1 Qualified Names.

An xsl:function declaration can only appear as a top-level element in a stylesheet module.

[ERR XTSE0740] A stylesheet function MUST have a prefixed name, to remove any risk of a clash with a function in the default function
namespace. It is a static error if the name has no prefix..

Note:

To prevent the namespace declaration used for the function name appearing in the result document, use the exclude-result-prefixes
attribute on the xsl:stylesheet element: see 11.1.3 Namespace Nodes for Literal Result Elements.

The prefix MUST NOT refer to a reserved namespace: [see ERR XTSE0080]

The content of the xsl:function element consists of zero or more xsl:param elements that specify the formal arguments of the function,
followed by a sequence constructor that defines the value to be returned by the function.

[DEFINITION: The arity of a stylesheet function is the number of xsl:param elements in the function definition.] Optional arguments are not
allowed.

[ERR XTSE0760] Because arguments to a stylesheet function call MUST all be specified, the xsl:param elements within an xsl:function
element MUST NOT specify a default value: this means they MUST be empty, and MUST NOT have a select attribute.

A stylesheet function is included in the in-scope functions of the static context for all XPath expressions used in the stylesheet, unless

there is another stylesheet function with the same name and arity, and higher import precedence, or
the override attribute has the value no and there is already a function with the same name and arity in the in-scope functions.

The optional override attribute defines what happens if this function has the same name and arity as a function provided by the implementer
or made available in the static context using an implementation-defined mechanism. If the override attribute has the value yes, then this
function is used in preference; if it has the value no, then the other function is used in preference. The default value is yes.

Note:

Specifying override="yes" ensures interoperable behavior: the same code will execute with all processors. Specifying override="no" is
useful when writing a fallback implementation of a function that is available with some processors but not others: it allows the vendor's
implementation of the function (or a user's implementation written as an extension function) to be used in preference to the stylesheet
implementation, which is useful when the extension function is more efficient.

The override attribute does not affect the rules for deciding which of several stylesheet functions with the same name and arity takes
precedence.

[ERR XTSE0770] It is a static error for a stylesheet to contain two or more functions with the same expanded-QName, the same arity, and the
same import precedence, unless there is another function with the same expanded-QName and arity, and a higher import precedence.

As defined in XPath, the function that is executed as the result of a function call is identified by looking in the in-scope functions of the static
context for a function whose name and arity matches the name and number of arguments in the function call.

Note:

Page 58 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Functions are not polymorphic. Although the XPath function call mechanism allows two functions to have the same name and different
arity, it does not allow them to be distinguished by the types of their arguments.

The optional as attribute indicates the required type of the result of the function. The value of the as attribute is a SequenceType XP, as
defined in [XPath 2.0].

[ERR XTTE0780] If the as attribute is specified, then the result evaluated by the sequence constructor (see 5.7 Sequence Constructors) is
converted to the required type, using the function conversion rules. It is a type error if this conversion fails. If the as attribute is omitted, the
calculated result is used as supplied, and no conversion takes place.

If a stylesheet function has been defined with a particular expanded-QName, then a call on function-available will return true when called
with an argument that is a lexical QName that expands to this same expanded-QName.

The xsl:param elements define the formal arguments to the function. These are interpreted positionally. When the function is called using a
function-call in an XPath expression, the first argument supplied is assigned to the first xsl:param element, the second argument supplied is
assigned to the second xsl:param element, and so on.

The as attribute of the xsl:param element defines the required type of the parameter. The rules for converting the values of the actual
arguments supplied in the function call to the types required by each xsl:param element are defined in [XPath 2.0]. The rules that apply are
those for the case where XPath 1.0 compatibility mode is set to false.

[ERR XTTE0790] If the value of a parameter to a stylesheet function cannot be converted to the required type, a type error is signaled.

If the as attribute is omitted, no conversion takes place and any value is accepted.

Within the body of a stylesheet function, the focus is initially undefined; this means that any attempt to reference the context item, context
position, or context size is a non-recoverable dynamic error. [XPDY0002]

It is not possible within the body of the stylesheet function to access the values of local variables that were in scope in the place where the
function call was written. Global variables, however, remain available.

Example: A Stylesheet Function

The following example creates a recursive stylesheet function named str:reverse that reverses the words in a supplied sentence, and
then invokes this function from within a template rule.

<xsl:transform
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:str="http://example.com/namespace"
 version="2.0"
 exclude-result-prefixes="str">

<xsl:function name="str:reverse" as="xs:string">
 <xsl:param name="sentence" as="xs:string"/>
 <xsl:sequence
 select="if (contains($sentence, ' '))
 then concat(str:reverse(substring-after($sentence, ' ')),
 ' ',
 substring-before($sentence, ' '))
 else $sentence"/>
</xsl:function>

<xsl:template match="/">
<output>
 <xsl:value-of select="str:reverse('DOG BITES MAN')"/>
</output>
</xsl:template>

</xsl:transform>

An alternative way of writing the same function is to implement the conditional logic at the XSLT level, thus:

<xsl:function name="str:reverse" as="xs:string">
 <xsl:param name="sentence" as="xs:string"/>
 <xsl:choose>
 <xsl:when test="contains($sentence, ' ')">
 <xsl:sequence select="concat(str:reverse(substring-after($sentence, ' ')),
 ' ',
 substring-before($sentence, ' '))"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:sequence select="$sentence"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:function>

Example: Declaring the Return Type of a Function

The following example illustrates the use of the as attribute in a function definition. It returns a string containing the representation of its
integer argument, expressed as a roman numeral. For example, the function call num:roman(7) will return the string "vii". This
example uses the xsl:number instruction, described in 12 Numbering. The xsl:number instruction returns a text node, and the function
conversion rules are invoked to convert this text node to the type declared in the xsl:function element, namely xs:string. So the text
node is atomized to a string.

Page 59 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

<xsl:function name="num:roman" as="xs:string">
 <xsl:param name="value" as="xs:integer"/>
 <xsl:number value="$value" format="i"/>
</xsl:function>

11 Creating Nodes and Sequences

This section describes instructions that directly create new nodes, or sequences of nodes and atomic values.

11.1 Literal Result Elements

[DEFINITION: In a sequence constructor, an element in the stylesheet that does not belong to the XSLT namespace and that is not an
extension instruction (see 18.2 Extension Instructions) is classified as a literal result element.] A literal result element is evaluated to
construct a new element node with the same expanded-QName (that is, the same namespace URI, local name, and namespace prefix). The
result of evaluating a literal result element is a node sequence containing one element, the newly constructed element node.

The content of the element is a sequence constructor (see 5.7 Sequence Constructors). The sequence obtained by evaluating this sequence
constructor, after prepending any attribute nodes produced as described in 11.1.2 Attribute Nodes for Literal Result Elements and
namespace nodes produced as described in 11.1.3 Namespace Nodes for Literal Result Elements, is used to construct the content of the
element, following the rules in 5.7.1 Constructing Complex Content

The base URI of the new element is copied from the base URI of the literal result element in the stylesheet, unless the content of the new
element includes an xml:base attribute, in which case the base URI of the new element is the value of that attribute, resolved (if it is a relative
URI) against the base URI of the literal result element in the stylesheet. (Note, however, that this is only relevant when creating a parentless
element. When the literal result element is copied to form a child of an element or document node, the base URI of the new copy is taken
from that of its new parent.)

11.1.1 Setting the Type Annotation for Literal Result Elements

The attributes xsl:type and xsl:validation may be used on a literal result element to invoke validation of the contents of the element
against a type definition or element declaration in a schema, and to determine the type annotation that the new element node will carry.
These attributes also affect the type annotation carried by any elements and attributes that have the new element node as an ancestor.
These two attributes are both optional, and if one is specified then the other MUST be omitted.

The value of the xsl:validation attribute, if present, must be one of the values strict, lax, preserve, or strip. The value of the xsl:type
attribute, if present, must be a QName identifying a type definition that is present in the in-scope schema components for the stylesheet.
Neither attribute may be specified as an attribute value template. The effect of these attributes is described in 19.2 Validation.

11.1.2 Attribute Nodes for Literal Result Elements

Attribute nodes for a literal result element may be created by including xsl:attribute instructions within the sequence constructor.
Additionally, attribute nodes are created corresponding to the attributes of the literal result element in the stylesheet, and as a result of
expanding the xsl:use-attribute-sets attribute of the literal result element, if present.

The sequence that is used to construct the content of the literal result element (as described in 5.7.1 Constructing Complex Content) is the
concatenation of the following four sequences, in order:

1. The sequence of namespace nodes produced as described in 11.1.3 Namespace Nodes for Literal Result Elements.
2. The sequence of attribute nodes produced by expanding the xsl:use-attribute-sets attribute (if present) following the rules given in

10.2 Named Attribute Sets
3. The attributes produced by processing the attributes of the literal result element itself, other than attributes in the XSLT namespace.

The way these are processed is described below.
4. The sequence produced by evaluating the contained sequence constructor, if the element is not empty.

Note:

The significance of this order is that an attribute produced by an xsl:attribute, xsl:copy, or xsl:copy-of instruction in the content of
the literal result element takes precedence over an attribute produced by expanding an attribute of the literal result element itself, which
in turn takes precedence over an attribute produced by expanding the xsl:use-attribute-sets attribute. This is because of the rules in
5.7.1 Constructing Complex Content, which specify that when two or more attributes in the sequence have the same name, all but the
last of the duplicates are discarded.

Although the above rules place namespace nodes before attributes, this is not strictly necessary, because the rules in 5.7.1 Constructing
Complex Content allow the namespaces and attributes to appear in any order so long as both come before other kinds of node. The
order of namespace nodes and attribute nodes in the sequence has no effect on the relative position of the nodes in document order
once they are added to a tree.

Each attribute of the literal result element, other than an attribute in the XSLT namespace, is processed to produce an attribute for the
element in the result tree.

The value of such an attribute is interpreted as an attribute value template: it can therefore contain expressions contained in curly brackets
({}). The new attribute node will have the same expanded-QName (that is, the same namespace URI, local name, and namespace prefix) as
the attribute in the stylesheet tree, and its string value will be the same as the effective value of the attribute in the stylesheet tree. The type
annotation on the attribute will initially be xs:untypedAtomic, and the typed value of the attribute node will be the same as its string value.

Note:

The eventual type annotation of the attribute in the result tree depends on the xsl:validation and xsl:type attributes of the parent
literal result element, and on the instructions used to create its ancestor elements. If the xsl:validation attribute is set to preserve or
strip, the type annotation will be xs:untypedAtomic, and the typed value of the attribute node will be the same as its string value. If the
xsl:validation attribute is set to strict or lax, or if the xsl:type attribute is used, the type annotation on the attribute will be set as a
result of the schema validation process applied to the parent element. If neither attribute is present, the type annotation on the attribute
will be xs:untypedAtomic.

Page 60 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

If the name of a constructed attribute is xml:id, the processor must perform attribute value normalization by effectively applying the
normalize-spaceFO function to the value of the attribute, and the resulting attribute node must be given the is-id property.

[ERR XTRE0795] It is a recoverable dynamic error if the name of a constructed attribute is xml:space and the value is not either default or
preserve. The optional recovery action is to construct the attribute with the value as requested.. This applies whether the attribute is
constructed using a literal result element, or by using the xsl:attribute, xsl:copy, or xsl:copy-of instructions.

Note:

The xml:base, xml:lang, xml:space, and xml:id attributes have two effects in XSLT. They behave as standard XSLT attributes, which
means for example that if they appear on a literal result element, they will be copied to the result tree in the same way as any other
attribute. In addition, they have their standard meaning as defined in the core XML specifications. Thus, an xml:base attribute in the
stylesheet affects the base URI of the element on which it appears, and an xml:space attribute affects the interpretation of whitespace
text nodes within that element. One consequence of this is that it is inadvisable to write these attributes as attribute value templates:
although an XSLT processor will understand this notation, the XML parser will not. See also 11.1.4 Namespace Aliasing which
describes how to use xsl:namespace-alias with these attributes.

The same is true of the schema-defined attributes xsi:type, xsi:nil, xsi:noNamespaceSchemaLocation, and xsi:schemaLocation. If the
stylesheet is processed by a schema processor, these attributes will be recognized and interpreted by the schema processor, but in
addition the XSLT processor treats them like any other attribute on a literal result element: that is, their effective value (after expanding
attribute value templates) is copied to the result tree in the same way as any other attribute. If the result tree is validated, the copied
attributes will again be recognized and interpreted by the schema processor.

None of these attributes will be generated in the result tree unless the stylesheet writes them to the result tree explicitly, in the same
way as any other attribute.

[ERR XTSE0805] It is a static error if an attribute on a literal result element is in the XSLT namespace, unless it is one of the attributes explicitly
defined in this specification.

Note:

If there is a need to create attributes in the XSLT namespace, this can be achieved using xsl:attribute, or by means of the
xsl:namespace-alias declaration.

11.1.3 Namespace Nodes for Literal Result Elements

The created element node will have a copy of the namespace nodes that were present on the element node in the stylesheet tree with the
exception of any namespace node whose string value is designated as an excluded namespace. Special considerations apply to aliased
namespaces: see 11.1.4 Namespace Aliasing

The following namespaces are designated as excluded namespaces:

The XSLT namespace URI (http://www.w3.org/1999/XSL/Transform)
A namespace URI declared as an extension namespace (see 18.2 Extension Instructions)
A namespace URI designated by using an [xsl:]exclude-result-prefixes attribute either on the literal result element itself or on an
ancestor element. The attribute MUST be in the XSLT namespace only if its parent element is not in the XSLT namespace.
The value of the attribute is either #all, or a whitespace-separated list of tokens, each of which is either a namespace prefix or
#default. The namespace bound to each of the prefixes is designated as an excluded namespace.
[ERR XTSE0808] It is a static error if a namespace prefix is used within the [xsl:]exclude-result-prefixes attribute and there is no
namespace binding in scope for that prefix.

The default namespace of the parent element of the [xsl:]exclude-result-prefixes attribute (see Section 6.2 Element NodesDM) may
be designated as an excluded namespace by including #default in the list of namespace prefixes.
[ERR XTSE0809] It is a static error if the value #default is used within the [xsl:]exclude-result-prefixes attribute and the parent
element of the [xsl:]exclude-result-prefixes attribute has no default namespace.
The value #all indicates that all namespaces that are in scope for the stylesheet element that is the parent of the [xsl:]exclude-
result-prefixes attribute are designated as excluded namespaces.
The designation of a namespace as an excluded namespace is effective within the subtree of the stylesheet module rooted at the
element bearing the [xsl:]exclude-result-prefixes attribute; a subtree rooted at an xsl:stylesheet element does not include any
stylesheet modules imported or included by children of that xsl:stylesheet element.

The excluded namespaces, as described above, only affect namespace nodes copied from the stylesheet when processing a literal result
element. There is no guarantee that an excluded namespace will not appear on the result tree for some other reason. Namespace nodes are
also written to the result tree as part of the process of namespace fixup (see 5.7.3 Namespace Fixup), or as the result of instructions such as
xsl:copy and xsl:element.

Note:

When a stylesheet uses a namespace declaration only for the purposes of addressing a source tree, specifying the prefix in the [xsl:]
exclude-result-prefixes attribute will avoid superfluous namespace declarations in the serialized result tree. The attribute is also
useful to prevent namespaces used solely for the naming of stylesheet functions or extension functions from appearing in the serialized
result tree.

Example: Excluding Namespaces from the Result Tree

For example, consider the following stylesheet:

<xsl:stylesheet xsl:version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:a="a.uri"
 xmlns:b="b.uri">
 exclude-result-prefixes="#all">

Page 61 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

<xsl:template match="/">
 <foo xmlns:c="c.uri" xmlns:d="d.uri" xmlns:a2="a.uri"
 xsl:exclude-result-prefixes="c"/>
</xsl:template>

</xsl:stylesheet>

The result of this stylesheet will be:

<foo xmlns:d="d.uri"/>

The namespaces a.uri and b.uri are excluded by virtue of the exclude-result-prefixes attribute on the xsl:stylesheet element, and
the namespace c.uri is excluded by virtue of the xsl:exclude-result-prefixes attribute on the foo element. The setting #all does not
affect the namespace d.uri because d.uri is not an in-scope namespace for the xsl:stylesheet element. The element in the result
tree does not have a namespace node corresponding to xmlns:a2="a.uri" because the effect of exclude-result-prefixes is to
designate the namespace URI a.uri as an excluded namespace, irrespective of how many prefixes are bound to this namespace URI.

If the stylesheet is changed so that the literal result element has an attribute b:bar="3", then the element in the result tree will typically
have a namespace declaration xmlns:b="b.uri" (the processor may choose a different namespace prefix if this is necessary to avoid
conflicts). The exclude-result-prefixes attribute makes b.uri an excluded namespace, so the namespace node is not automatically
copied from the stylesheet, but the presence of an attribute whose name is in the namespace b.uri forces the namespace fixup
process (see 5.7.3 Namespace Fixup) to introduce a namespace node for this namespace.

A literal result element may have an optional xsl:inherit-namespaces attribute, with the value yes or no. The default value is yes. If the value
is set to yes, or is omitted, then the namespace nodes created for the newly constructed element are copied to the children and descendants
of the newly constructed element, as described in 5.7.1 Constructing Complex Content. If the value is set to no, then these namespace nodes
are not automatically copied to the children. This may result in namespace undeclarations (such as xmlns="" or, in the case of XML 1.1,
xmlns:p="") appearing on the child elements when a final result tree is serialized.

11.1.4 Namespace Aliasing

When a stylesheet is used to define a transformation whose output is itself a stylesheet module, or in certain other cases where the result
document uses namespaces that it would be inconvenient to use in the stylesheet, namespace aliasing can be used to declare a mapping
between a namespace URI used in the stylesheet and the corresponding namespace URI to be used in the result document.

[DEFINITION: A namespace URI in the stylesheet tree that is being used to specify a namespace URI in the result tree is called a literal
namespace URI.]

[DEFINITION: The namespace URI that is to be used in the result tree as a substitute for a literal namespace URI is called the target
namespace URI.]

Either of the literal namespace URI or the target namespace URI can be null: this is treated as a reference to the set of names that are in no
namespace.

<!-- Category: declaration -->
<xsl:namespace-alias
 stylesheet-prefix = prefix | "#default"
 result-prefix = prefix | "#default" />

[DEFINITION: A stylesheet can use the xsl:namespace-alias element to declare that a literal namespace URI is being used as an alias for a
target namespace URI.]

The effect is that when names in the namespace identified by the literal namespace URI are copied to the result tree, the namespace URI in
the result tree will be the target namespace URI, instead of the literal namespace URI. This applies to:

the namespace URI in the expanded-QName of a literal result element in the stylesheet
the namespace URI in the expanded-QName of an attribute specified on a literal result element in the stylesheet

Where namespace aliasing changes the namespace URI part of the expanded-QName containing the name of an element or attribute node,
the namespace prefix in that expanded-QName is replaced by the prefix indicated by the result-prefix attribute of the xsl:namespace-alias
declaration.

The xsl:namespace-alias element declares that the namespace URI bound to the prefix specified by the stylesheet-prefix is the literal
namespace URI, and the namespace URI bound to the prefix specified by the result-prefix attribute is the target namespace URI. Thus,
the stylesheet-prefix attribute specifies the namespace URI that will appear in the stylesheet, and the result-prefix attribute specifies the
corresponding namespace URI that will appear in the result tree.

The default namespace (as declared by xmlns) may be specified by using #default instead of a prefix. If no default namespace is in force,
specifying #default denotes the null namespace URI. This allows elements that are in no namespace in the stylesheet to acquire a
namespace in the result document, or vice versa.

If a literal namespace URI is declared to be an alias for multiple different target namespace URIs, then the declaration with the highest import
precedence is used.

[ERR XTSE0810] It is a static error if there is more than one such declaration with the same literal namespace URI and the same import
precedence and different values for the target namespace URI, unless there is also an xsl:namespace-alias declaration with the same literal
namespace URI and a higher import precedence.

[ERR XTSE0812] It is a static error if a value other than #default is specified for either the stylesheet-prefix or the result-prefix attributes
of the xsl:namespace-alias element when there is no in-scope binding for that namespace prefix.

When a literal result element is processed, its namespace nodes are handled as follows:

Page 62 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

A namespace node whose string value is a literal namespace URI is not copied to the result tree.
A namespace node whose string value is a target namespace URI is copied to the result tree, whether or not the URI identifies an
excluded namespace.

In the event that the same URI is used as a literal namespace URI and a target namespace URI, the second of these rules takes
precedence.

Note:

These rules achieve the effect that the element generated from the literal result element will have an in-scope namespace node that
binds the result-prefix to the target namespace URI, provided that the namespace declaration associating this prefix with this URI is
in scope for both the xsl:namespace-alias instruction and for the literal result element. Conversely, the stylesheet-prefix and the
literal namespace URI will not normally appear in the result tree.

Example: Using xsl:namespace-alias to Generate a Stylesheet

When literal result elements are being used to create element, attribute, or namespace nodes that use the XSLT namespace URI, the
stylesheet may use an alias.

For example, the stylesheet

<xsl:stylesheet
 version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 xmlns:axsl="file://namespace.alias">

<xsl:namespace-alias stylesheet-prefix="axsl" result-prefix="xsl"/>

<xsl:template match="/">
 <axsl:stylesheet version="2.0">
 <xsl:apply-templates/>
 </axsl:stylesheet>
</xsl:template>

<xsl:template match="elements">
 <axsl:template match="/">
 <axsl:comment select="system-property('xsl:version')"/>
 <axsl:apply-templates/>
 </axsl:template>
</xsl:template>

<xsl:template match="block">
 <axsl:template match="{.}">
 <fo:block><axsl:apply-templates/></fo:block>
 </axsl:template>
</xsl:template>

</xsl:stylesheet>

will generate an XSLT stylesheet from a document of the form:

<elements>
<block>p</block>
<block>h1</block>
<block>h2</block>
<block>h3</block>
<block>h4</block>
</elements>

The output of the transformation will be a stylesheet such as the following. Whitespace has been added for clarity. Note that an
implementation may output different namespace prefixes from those appearing in this example; however, the rules guarantee that there
will be a namespace node that binds the prefix xsl to the URI http://www.w3.org/1999/XSL/Transform, which makes it safe to use the
QName xsl:version in the content of the generated stylesheet.

<xsl:stylesheet
 version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format">

<xsl:template match="/">
 <xsl:comment select="system-property('xsl:version')"/>
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="p">
 <fo:block><xsl:apply-templates/></fo:block>
</xsl:template>

<xsl:template match="h1">
 <fo:block><xsl:apply-templates/></fo:block>
</xsl:template>

<xsl:template match="h2">
 <fo:block><xsl:apply-templates/></fo:block>
</xsl:template>

<xsl:template match="h3">
 <fo:block><xsl:apply-templates/></fo:block>
</xsl:template>

<xsl:template match="h4">

Page 63 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 <fo:block><xsl:apply-templates/></fo:block>
</xsl:template>

</xsl:stylesheet>

Note:

It may be necessary also to use aliases for namespaces other than the XSLT namespace URI. For example, it can be useful to define an
alias for the namespace http://www.w3.org/2001/XMLSchema-instance, so that the stylesheet can use the attributes xsi:type, xsi:nil,
and xsi:schemaLocation on a literal result element, without running the risk that a schema processor will interpret these as applying to
the stylesheet itself. Equally, literal result elements belonging to a namespace dealing with digital signatures might cause XSLT
stylesheets to be mishandled by general-purpose security software; using an alias for the namespace would avoid the possibility of such
mishandling.

Example: Aliasing the XML Namespace

It is possible to define an alias for the XML namespace.

<xsl:stylesheet xmlns:axml="http://www.example.com/alias-xml"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">

<xsl:namespace-alias stylesheet-prefix="axml" result-prefix="xml"/>

<xsl:template match="/">
 <name axml:space="preserve">
 <first>James</first>
 <xsl:text> </xsl:text>
 <last>Clark</last>
 </name>
</xsl:template>

</xsl:stylesheet>

produces the output:

<name xml:space="preserve"><first>James</first> <last>Clark</last></name>

This allows an xml:space attribute to be generated in the output without affecting the way the stylesheet is parsed. The same technique
can be used for other attributes such as xml:lang, xml:base, and xml:id.

Note:

Namespace aliasing is only necessary when literal result elements are used. The problem of reserved namespaces does not arise when
using xsl:element and xsl:attribute to construct the result tree. Therefore, as an alternative to using xsl:namespace-alias, it is always
possible to achieve the desired effect by replacing literal result elements with xsl:element and xsl:attribute instructions.

11.2 Creating Element Nodes Using xsl:element

<!-- Category: instruction -->
<xsl:element
 name = { qname }
 namespace? = { uri-reference }
 inherit-namespaces? = "yes" | "no"
 use-attribute-sets? = qnames
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip">
 <!-- Content: sequence-constructor -->
</xsl:element>

The xsl:element instruction allows an element to be created with a computed name. The expanded-QName of the element to be created is
specified by a REQUIRED name attribute and an optional namespace attribute.

The content of the xsl:element instruction is a sequence constructor for the children, attributes, and namespaces of the created element.
The sequence obtained by evaluating this sequence constructor (see 5.7 Sequence Constructors) is used to construct the content of the
element, as described in 5.7.1 Constructing Complex Content.

The xsl:element element may have a use-attribute-sets attribute, whose value is a whitespace-separated list of QNames that identify
xsl:attribute-set declarations. If this attribute is present, it is expanded as described in 10.2 Named Attribute Sets to produce a sequence
of attribute nodes. This sequence is prepended to the sequence produced as a result of evaluating the sequence constructor, as described in
5.7.1 Constructing Complex Content.

The result of evaluating the xsl:element instruction, except in error cases, is the newly constructed element node.

The name attribute is interpreted as an attribute value template, whose effective value MUST be a lexical QName.

[ERR XTDE0820] It is a non-recoverable dynamic error if the effective value of the name attribute is not a lexical QName.

[ERR XTDE0830] In the case of an xsl:element instruction with no namespace attribute, it is a non-recoverable dynamic error if the effective
value of the name attribute is a QName whose prefix is not declared in an in-scope namespace declaration for the xsl:element instruction.

If the namespace attribute is not present then the QName is expanded into an expanded-QName using the namespace declarations in effect
for the xsl:element element, including any default namespace declaration.

Page 64 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

If the namespace attribute is present, then it too is interpreted as an attribute value template. The effective value MUST be in the lexical space
of the xs:anyURI type. If the string is zero-length, then the expanded-QName of the element has a null namespace URI. Otherwise, the string
is used as the namespace URI of the expanded-QName of the element to be created. The local part of the lexical QName specified by the
name attribute is used as the local part of the expanded-QName of the element to be created.

[ERR XTDE0835] It is a non-recoverable dynamic error if the effective value of the namespace attribute is not in the lexical space of the
xs:anyURI data type.

Note:

The XDM data model requires the name of a node to be an instance of xs:QName, and XML Schema defines the namespace part of an
xs:QName to be an instance of xs:anyURI. However, the schema specification, and the specifications that it refers to, give
implementations some flexibility in how strictly they enforce these constraints.

The prefix of the lexical QName specified in the name attribute (or the absence of a prefix) is copied to the prefix part of the expanded-
QName representing the name of the new element node. In the event of a conflict a prefix may subsequently be added, changed, or
removed during the namespace fixup process (see 5.7.3 Namespace Fixup).

The xsl:element instruction has an optional inherit-namespaces attribute, with the value yes or no. The default value is yes. If the value is
set to yes, or is omitted, then the namespace nodes created for the newly constructed element (whether these were copied from those of the
source node, or generated as a result of namespace fixup) are copied to the children and descendants of the newly constructed element, as
described in 5.7.1 Constructing Complex Content. If the value is set to no, then these namespace nodes are not automatically copied to the
children. This may result in namespace undeclarations (such as xmlns="" or, in the case of XML Namespaces 1.1, xmlns:p="") appearing
on the child elements when a final result tree is serialized.

The base URI of the new element is copied from the base URI of the xsl:element instruction in the stylesheet, unless the content of the new
element includes an xml:base attribute, in which case the base URI of the new element is the value of that attribute, resolved (if it is a
relative URI) against the base URI of the xsl:element instruction in the stylesheet. (Note, however, that this is only relevant when creating
parentless elements. When the new element is copied to form a child of an element or document node, the base URI of the new copy is
taken from that of its new parent.)

11.2.1 Setting the Type Annotation for a Constructed Element Node

The optional attributes type and validation may be used on the xsl:element instruction to invoke validation of the contents of the element
against a type definition or element declaration in a schema, and to determine the type annotation that the new element node will carry.
These attributes also affect the type annotation carried by any elements and attributes that have the new element node as an ancestor.
These two attributes are both optional, and if one is specified then the other MUST be omitted. The permitted values of these attributes and
their semantics are described in 19.2 Validation.

Note:

The final type annotation of the element in the result tree also depends on the type and validation attributes of the instructions used to
create the ancestors of the element.

11.3 Creating Attribute Nodes Using xsl:attribute

<!-- Category: instruction -->
<xsl:attribute
 name = { qname }
 namespace? = { uri-reference }
 select? = expression
 separator? = { string }
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip">
 <!-- Content: sequence-constructor -->
</xsl:attribute>

The xsl:attribute element can be used to add attributes to result elements whether created by literal result elements in the stylesheet or by
instructions such as xsl:element or xsl:copy. The expanded-QName of the attribute to be created is specified by a REQUIRED name attribute
and an optional namespace attribute. Except in error cases, the result of evaluating an xsl:attribute instruction is the newly constructed
attribute node.

The string value of the new attribute node may be defined either by using the select attribute, or by the sequence constructor that forms the
content of the xsl:attribute element. These are mutually exclusive. If neither is present, the value of the new attribute node will be a zero-
length string. The way in which the value is constructed is specified in 5.7.2 Constructing Simple Content.

[ERR XTSE0840] It is a static error if the select attribute of the xsl:attribute element is present unless the element has empty content.

If the separator attribute is present, then the effective value of this attribute is used to separate adjacent items in the result sequence, as
described in 5.7.2 Constructing Simple Content. In the absence of this attribute, the default separator is a single space (#x20) when the
content is specified using the select attribute, or a zero-length string when the content is specified using a sequence constructor.

The name attribute is interpreted as an attribute value template, whose effective value MUST be a lexical QName.

[ERR XTDE0850] It is a non-recoverable dynamic error if the effective value of the name attribute is not a lexical QName.

[ERR XTDE0855] In the case of an xsl:attribute instruction with no namespace attribute, it is a non-recoverable dynamic error if the effective
value of the name attribute is the string xmlns.

[ERR XTDE0860] In the case of an xsl:attribute instruction with no namespace attribute, it is a non-recoverable dynamic error if the effective
value of the name attribute is a lexical QName whose prefix is not declared in an in-scope namespace declaration for the xsl:attribute
instruction.

If the namespace attribute is not present, then the lexical QName is expanded into an expanded-QName using the namespace declarations in
effect for the xsl:attribute element, not including any default namespace declaration.

Page 65 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

If the namespace attribute is present, then it too is interpreted as an attribute value template. The effective value MUST be in the lexical space
of the xs:anyURI type. If the string is zero-length, then the expanded-QName of the attribute has a null namespace URI. Otherwise, the
string is used as the namespace URI of the expanded-QName of the attribute to be created. The local part of the lexical QName specified by
the name attribute is used as the local part of the expanded-QName of the attribute to be created.

[ERR XTDE0865] It is a non-recoverable dynamic error if the effective value of the namespace attribute is not in the lexical space of the
xs:anyURI data type.

Note:

The same considerations apply as for elements: [see ERR XTDE0835] in 11.2 Creating Element Nodes Using xsl:element .

The prefix of the lexical QName specified in the name attribute (or the absence of a prefix) is copied to the prefix part of the expanded-
QName representing the name of the new attribute node. In the event of a conflict this prefix (or absence of a prefix) may subsequently be
changed during the namespace fixup process (see 5.7.3 Namespace Fixup). If the attribute is in a non-null namespace and no prefix is
specified, then the namespace fixup process will invent a prefix.

If the name of a constructed attribute is xml:id, the processor must perform attribute value normalization by effectively applying the
normalize-spaceFO function to the value of the attribute, and the resulting attribute node must be given the is-id property. This applies
whether the attribute is constructed using the xsl:attribute instruction or whether it is constructed using an attribute of a literal result
element. This does not imply any constraints on the value of the attribute, or on its uniqueness, and it does not affect the type annotation of
the attribute, unless the containing document is validated.

Note:

The effect of setting the is-id property is that the parent element can be located within the containing document by use of the id FO
function. In effect, XSLT when constructing a document performs some of the functions of an xml:id processor, as defined in [xml:id];
the other aspects of xml:id processing are performed during validation.

Example: Creating a List-Valued Attribute

The following instruction creates the attribute colors="red green blue":

<xsl:attribute name="colors" select="'red', 'green', 'blue'"/>

Example: Namespaces are not Attributes

It is not an error to write:

<xsl:attribute name="xmlns:xsl"
 namespace="file://some.namespace">http://www.w3.org/1999/XSL/Transform</xsl:attribute>

However, this will not result in the namespace declaration xmlns:xsl="http://www.w3.org/1999/XSL/Transform" being output. Instead,
it will produce an attribute node with local name xsl, and with a system-allocated namespace prefix mapped to the namespace URI
file://some.namespace. This is because the namespace fixup process is not allowed to use xmlns as the name of a namespace node.

As described in 5.7.1 Constructing Complex Content, in a sequence that is used to construct the content of an element, any attribute nodes
MUST appear in the sequence before any element, text, comment, or processing instruction nodes. Where the sequence contains two or
more attribute nodes with the same expanded-QName, the one that comes last is the only one that takes effect.

Note:

If a collection of attributes is generated repeatedly, this can be done conveniently by using named attribute sets: see 10.2 Named
Attribute Sets

11.3.1 Setting the Type Annotation for a Constructed Attribute Node

The optional attributes type and validation may be used on the xsl:attribute instruction to invoke validation of the contents of the
attribute against a type definition or attribute declaration in a schema, and to determine the type annotation that the new attribute node will
carry. These two attributes are both optional, and if one is specified then the other MUST be omitted. The permitted values of these attributes
and their semantics are described in 19.2 Validation.

Note:

The final type annotation of the attribute in the result tree also depends on the type and validation attributes of the instructions used to
create the ancestors of the attribute.

11.4 Creating Text Nodes

This section describes three different ways of creating text nodes: by means of literal text nodes in the stylesheet, or by using the xsl:text
and xsl:value-of instructions. It is also possible to create text nodes using the xsl:number instruction described in 12 Numbering.

If and when the sequence that results from evaluating a sequence constructor is used to form the content of a node, as described in 5.7.2
Constructing Simple Content and 5.7.1 Constructing Complex Content, adjacent text nodes in the sequence are merged. Within the
sequence itself, however, they exist as distinct nodes.

Page 66 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Example: A sequence of text nodes

The following function returns a sequence of three text nodes:

<xsl:function name="f:wrap">
 <xsl:param name="s"/>
 <xsl:text>(</xsl:text>
 <xsl:value-of select="$s"/>
 <xsl:text>)</xsl:text>
</xsl:function>

When this function is called as follows:

<xsl:value-of select="f:wrap('---')"/>

the result is:

(---)

No additional spaces are inserted, because the calling xsl:value-of instruction merges adjacent text nodes before atomizing the
sequence. However, the result of the instruction:

<xsl:value-of select="data(f:wrap('---'))"/>

is:

(---)

because in this case the three text nodes are atomized to form three strings, and spaces are inserted between adjacent strings.

It is possible to construct text nodes whose string value is zero-length. A zero-length text node, when atomized, produces a zero-length
string. However, zero-length text nodes are ignored when they appear in a sequence that is used to form the content of a node, as described
in 5.7.1 Constructing Complex Content and 5.7.2 Constructing Simple Content.

11.4.1 Literal Text Nodes

A sequence constructor can contain text nodes. Each text node in a sequence constructor remaining after whitespace text nodes have been
stripped as specified in 4.2 Stripping Whitespace from the Stylesheet will construct a new text node with the same string value. The resulting
text node is added to the result of the containing sequence constructor.

Text is processed at the tree level. Thus, markup of < in a template will be represented in the stylesheet tree by a text node that includes
the character <. This will create a text node in the result tree that contains a < character, which will be represented by the markup < (or an
equivalent character reference) when the result tree is serialized as an XML document, unless otherwise specified using character maps
(see 20.1 Character Maps) or disable-output-escaping (see 20.2 Disabling Output Escaping).

11.4.2 Creating Text Nodes Using xsl:text

<!-- Category: instruction -->
<xsl:text
 [disable-output-escaping]? = "yes" | "no">
 <!-- Content: #PCDATA -->
</xsl:text>

The xsl:text element is evaluated to contruct a new text node. The content of the xsl:text element is a single text node whose value forms
the string value of the new text node. An xsl:text element may be empty, in which case the result of evaluating the instruction is a text node
whose string value is the zero-length string.

The result of evaluating an xsl:text instruction is the newly constructed text node.

A text node that is an immediate child of an xsl:text instruction will not be stripped from the stylesheet tree, even if it consists entirely of
whitespace (see 4.4 Stripping Whitespace from a Source Tree).

For the effect of the deprecated disable-output-escaping attribute, see 20.2 Disabling Output Escaping

Note:

It is not always necessary to use the xsl:text instruction to write text nodes to the result tree. Literal text can be written to the result
tree by including it anywhere in a sequence constructor, while computed text can be output using the xsl:value-of instruction. The
principal reason for using xsl:text is that it offers improved control over whitespace handling.

11.4.3 Generating Text with xsl:value-of

Within a sequence constructor, the xsl:value-of instruction can be used to generate computed text nodes. The xsl:value-of instruction
computes the text using an expression that is specified as the value of the select attribute, or by means of contained instructions. This
might, for example, extract text from a source tree or insert the value of a variable.

<!-- Category: instruction -->
<xsl:value-of
 select? = expression
 separator? = { string }

Page 67 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 [disable-output-escaping]? = "yes" | "no">
 <!-- Content: sequence-constructor -->
</xsl:value-of>

The xsl:value-of instruction is evaluated to construct a new text node; the result of the instruction is the newly constructed text node.

The string value of the new text node may be defined either by using the select attribute, or by the sequence constructor (see 5.7 Sequence
Constructors) that forms the content of the xsl:value-of element. These are mutually exclusive, and one of them must be present. The way
in which the value is constructed is specified in 5.7.2 Constructing Simple Content.

[ERR XTSE0870] It is a static error if the select attribute of the xsl:value-of element is present when the content of the element is non-empty,
or if the select attribute is absent when the content is empty.

If the separator attribute is present, then the effective value of this attribute is used to separate adjacent items in the result sequence, as
described in 5.7.2 Constructing Simple Content. In the absence of this attribute, the default separator is a single space (#x20) when the
content is specified using the select attribute, or a zero-length string when the content is specified using a sequence constructor.

Special rules apply when backwards compatible behavior is enabled for the instruction. If no separator attribute is present, and if the select
attribute is present, then all items in the atomized result sequence other than the first are ignored.

Example: Generating a List with Separators

The instruction:

<x><xsl:value-of select="1 to 4" separator="|"/></x>

produces the output:

<x>1|2|3|4</x>

Note:

The xsl:copy-of element can be used to copy a sequence of nodes to the result tree without atomization. See 11.9.2 Deep Copy.

For the effect of the deprecated disable-output-escaping attribute, see 20.2 Disabling Output Escaping

11.5 Creating Document Nodes

<!-- Category: instruction -->
<xsl:document
 validation? = "strict" | "lax" | "preserve" | "strip"
 type? = qname>
 <!-- Content: sequence-constructor -->
</xsl:document>

The xsl:document instruction is used to create a new document node. The content of the xsl:document element is a sequence constructor for
the children of the new document node. A document node is created, and the sequence obtained by evaluating the sequence constructor is
used to construct the content of the document, as described in 5.7.1 Constructing Complex Content. The temporary tree rooted at this
document node forms the result tree.

Except in error situations, the result of evaluating the xsl:document instruction is a single node, the newly constructed document node.

Note:

The new document is not serialized. To construct a document that is to form a final result rather than an intermediate result, use the
xsl:result-document instruction described in 19.1 Creating Final Result Trees.

The optional attributes type and validation may be used on the xsl:document instruction to validate the contents of the new document, and
to determine the type annotation that elements and attributes within the result tree will carry. The permitted values and their semantics are
described in 19.2.2 Validating Document Nodes.

The base URI of the new document node is taken from the base URI of the xsl:document instruction.

The document-uri and unparsed-entities properties of the new document node are set to empty.

Example: Checking Uniqueness Constraints in a Temporary Tree

The following example creates a temporary tree held in a variable. The use of an enclosed xsl:document instruction ensures that
uniqueness constraints defined in the schema for the relevant elements are checked.

<xsl:variable name="tree" as="document-node()">
 <xsl:document validation="strict">
 <xsl:apply-templates/>
 </xsl:document>
</xsl:variable>

11.6 Creating Processing Instructions

<!-- Category: instruction -->
<xsl:processing-instruction

Page 68 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 name = { ncname }
 select? = expression>
 <!-- Content: sequence-constructor -->
</xsl:processing-instruction>

The xsl:processing-instruction element is evaluated to create a processing instruction node.

The xsl:processing-instruction element has a REQUIRED name attribute that specifies the name of the processing instruction node. The
value of the name attribute is interpreted as an attribute value template.

The string value of the new processing-instruction node may be defined either by using the select attribute, or by the sequence constructor
that forms the content of the xsl:processing-instruction element. These are mutually exclusive. If neither is present, the string value of the
new processing-instruction node will be a zero-length string. The way in which the value is constructed is specified in 5.7.2 Constructing
Simple Content.

[ERR XTSE0880] It is a static error if the select attribute of the xsl:processing-instruction element is present unless the element has empty
content.

Except in error situations, the result of evaluating the xsl:processing-instruction instruction is a single node, the newly constructed
processing instruction node.

Example: Creating a Processing Instruction

This instruction:

<xsl:processing-instruction name="xml-stylesheet"
 select="('href="book.css"', 'type="text/css")"/>

creates the processing instruction

<?xml-stylesheet href="book.css" type="text/css"?>

Note that the xml-stylesheet processing instruction contains pseudo-attributes in the form name="value". Although these have the
same textual form as attributes in an element start tag, they are not represented as XDM attribute nodes, and cannot therefore be
constructed using xsl:attribute instructions.

[ERR XTDE0890] It is a non-recoverable dynamic error if the effective value of the name attribute is not both an NCName Names and a PITarget
XML.

Note:

Because these rules disallow the name xml, the xsl:processing-instruction cannot be used to output an XML declaration. The
xsl:output declaration should be used to control this instead (see 20 Serialization).

If the result of evaluating the content of the xsl:processing-instruction contains the string ?>, this string is modified by inserting a space
between the ? and > characters.

The base URI of the new processing-instruction is copied from the base URI of the xsl:processing-instruction element in the stylesheet.
(Note, however, that this is only relevant when creating a parentless processing instruction. When the new processing instruction is copied to
form a child of an element or document node, the base URI of the new copy is taken from that of its new parent.)

11.7 Creating Namespace Nodes

<!-- Category: instruction -->
<xsl:namespace
 name = { ncname }
 select? = expression>
 <!-- Content: sequence-constructor -->
</xsl:namespace>

The xsl:namespace element is evaluated to create a namespace node. Except in error situations, the result of evaluating the xsl:namespace
instruction is a single node, the newly constructed namespace node.

The xsl:namespace element has a REQUIRED name attribute that specifies the name of the namespace node (that is, the namespace prefix).
The value of the name attribute is interpreted as an attribute value template. If the effective value of the name attribute is a zero-length string, a
namespace node is added for the default namespace.

The string value of the new namespace node (that is, the namespace URI) may be defined either by using the select attribute, or by the
sequence constructor that forms the content of the xsl:namespace element. These are mutually exclusive. Since the string value of a
namespace node cannot be a zero-length string, one of them must be present. The way in which the value is constructed is specified in 5.7.2
Constructing Simple Content.

[ERR XTDE0905] It is a non-recoverable dynamic error if the string value of the new namespace node is not valid in the lexical space of the
data type xs:anyURI. [see ERR XTDE0835]

[ERR XTSE0910] It is a static error if the select attribute of the xsl:namespace element is present when the element has content other than one
or more xsl:fallback instructions, or if the select attribute is absent when the element has empty content.

Note the restrictions described in 5.7.1 Constructing Complex Content for the position of a namespace node relative to other nodes in the
node sequence returned by a sequence constructor.

Page 69 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Example: Constructing a QName-Valued Attribute

This literal result element:

<data xsi:type="xs:integer" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xsl:namespace name="xs" select="'http://www.w3.org/2001/XMLSchema'"/>
 <xsl:text>42</xsl:text>
</data>

would typically cause the output document to contain the element:

<data xsi:type="xs:integer"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">42</data>

In this case, the element is constructed using a literal result element, and the namespace
xmlns:xs="http://www.w3.org/2001/XMLSchema" could therefore have been added to the result tree simply by declaring it as one of the
in-scope namespaces in the stylesheet. In practice, the xsl:namespace instruction is more likely to be useful in situations where the
element is constructed using an xsl:element instruction, which does not copy all the in-scope namespaces from the stylesheet.

[ERR XTDE0920] It is a non-recoverable dynamic error if the effective value of the name attribute is neither a zero-length string nor an NCName

Names, or if it is xmlns.

[ERR XTDE0925] It is a non-recoverable dynamic error if the xsl:namespace instruction generates a namespace node whose name is xml and
whose string value is not http://www.w3.org/XML/1998/namespace, or a namespace node whose string value is
http://www.w3.org/XML/1998/namespace and whose name is not xml.

[ERR XTDE0930] It is a non-recoverable dynamic error if evaluating the select attribute or the contained sequence constructor of an
xsl:namespace instruction results in a zero-length string.

For details of other error conditions that may arise, see 5.7 Sequence Constructors.

Note:

It is rarely necessary to use xsl:namespace to create a namespace node in the result tree; in most circumstances, the required
namespace nodes will be created automatically, as a side-effect of writing elements or attributes that use the namespace. An example
where xsl:namespace is needed is a situation where the required namespace is used only within attribute values in the result document,
not in element or attribute names; especially where the required namespace prefix or namespace URI is computed at run-time and is
not present in either the source document or the stylesheet.

Adding a namespace node to the result tree will never change the expanded-QName of any element or attribute node in the result tree:
that is, it will never change the namespace URI of an element or attribute. It might, however, constrain the choice of prefixes when
namespace fixup is performed.

Namespace prefixes for element and attribute names are effectively established by the namespace fixup process described in 5.7.3
Namespace Fixup. The fixup process ensures that an element has in-scope namespace nodes for the namespace URIs used in the
element name and in its attribute names, and the serializer will typically use these namespace nodes to determine the prefix to use in
the serialized output. The fixup process cannot generate namespace nodes that are inconsistent with those already present in the tree.
This means that it is not possible for the processor to decide the prefix to use for an element or for any of its attributes until all the
namespace nodes for the element have been added.

If a namespace prefix is mapped to a particular namespace URI using the xsl:namespace instruction, or by using xsl:copy or xsl:copy-
of to copy a namespace node, this prevents the namespace fixup process (and hence the serializer) from using the same prefix for a
different namespace URI on the same element.

Example: Conflicting Namespace Prefixes

Given the instruction:

<xsl:element name="p:item" xmlns:p="http://www.example.com/p">
 <xsl:namespace name="p">http://www.example.com/q</xsl:namespace>
</xsl:element>

a possible serialization of the result tree is:

<ns0:item xmlns:ns0="http://www.example.com/p" xmlns:p="http://www.example.com/q"/>

The processor must invent a namespace prefix for the URI p.uri; it cannot use the prefix p because that prefix has been explicitly
associated with a different URI.

Note:

The xsl:namespace instruction cannot be used to generate a namespace undeclaration of the form xmlns="" (nor the new forms of
namespace undeclaration permitted in [Namespaces in XML 1.1]). Namespace undeclarations are generated automatically by the
serializer if undeclare-prefixes="yes" is specified on xsl:output, whenever a parent element has a namespace node for the default
namespace prefix, and a child element has no namespace node for that prefix.

Page 70 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

11.8 Creating Comments

<!-- Category: instruction -->
<xsl:comment
 select? = expression>
 <!-- Content: sequence-constructor -->
</xsl:comment>

The xsl:comment element is evaluated to contruct a new comment node. Except in error cases, the result of evaluating the xsl:comment
instruction is a single node, the newly constructed comment node.

The string value of the new comment node may be defined either by using the select attribute, or by the sequence constructor that forms
the content of the xsl:comment element. These are mutually exclusive. If neither is present, the value of the new comment node will be a
zero-length string. The way in which the value is constructed is specified in 5.7.2 Constructing Simple Content.

[ERR XTSE0940] It is a static error if the select attribute of the xsl:comment element is present unless the element has empty content.

Example: Generating a Comment Node

For example, this

<xsl:comment>This file is automatically generated. Do not edit!</xsl:comment>

would create the comment

<!--This file is automatically generated. Do not edit!-->

In the generated comment node, the processor MUST insert a space after any occurrence of - that is followed by another - or that ends the
comment.

11.9 Copying Nodes

11.9.1 Shallow Copy

<!-- Category: instruction -->
<xsl:copy
 copy-namespaces? = "yes" | "no"
 inherit-namespaces? = "yes" | "no"
 use-attribute-sets? = qnames
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip">
 <!-- Content: sequence-constructor -->
</xsl:copy>

The xsl:copy instruction provides a way of copying the context item. If the context item is a node, evaluating the xsl:copy instruction
constructs a copy of the context node, and the result of the xsl:copy instruction is this newly constructed node. By default, the namespace
nodes of the context node are automatically copied as well, but the attributes and children of the node are not automatically copied.

When the context item is an atomic value, the xsl:copy instruction returns this value. The sequence constructor, if present, is not evaluated.

When the context item is an attribute node, text node, comment node, processing instruction node, or namespace node, the xsl:copy
instruction returns a new node that is a copy of the context node. The new node will have the same node kind, name, and string value as the
context node. In the case of an attribute node, it will also have the same values for the is-id and is-idrefs properties. The sequence
constructor, if present, is not evaluated.

When the context item is a document node or element node, the xsl:copy instruction returns a new node that has the same node kind and
name as the context node. The content of the new node is formed by evaluating the sequence constructor contained in the xsl:copy
instruction. The sequence obtained by evaluating this sequence constructor is used (after prepending any attribute nodes or namespace
nodes as described in the following paragraphs) to construct the content of the document or element node, as described in 5.7.1
Constructing Complex Content.

Example: Identity Transformation

The identity transformation can be written using xsl:copy as follows:

<xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>

This template rule can be used to copy any node in a tree by applying template rules to its attributes and children. It can be combined
with additional template rules that modify selected nodes, for example if all nodes are to be copied except note elements and their
contents, this can be achieved by using the identity template rule together with the template rule:

<xsl:template match="note"/>

Note:

The xsl:copy instruction is most useful when copying element nodes. In other cases, the xsl:copy-of instruction is more flexible,

Page 71 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

because it has a select attribute allowing selection of the nodes or values to be copied.

The xsl:copy instruction has an optional use-attribute-sets attribute, whose value is a whitespace-separated list of QNames that identify
xsl:attribute-set declarations. This attribute is used only when copying element nodes. This list is expanded as described in 10.2 Named
Attribute Sets to produce a sequence of attribute nodes. This sequence is prepended to the sequence produced as a result of evaluating the
sequence constructor.

The xsl:copy instruction has an optional copy-namespaces attribute, with the value yes or no. The default value is yes. The attribute is used
only when copying element nodes. If the value is set to yes, or is omitted, then all the namespace nodes of the source element are copied as
namespace nodes for the result element. These copied namespace nodes are prepended to the sequence produced as a result of
evaluating the sequence constructor (it is immaterial whether they come before or after any attribute nodes produced by expanding the use-
attribute-sets attribute). If the value is set to no, then the namespace nodes are not copied. However, namespace nodes will still be added
to the result element as REQUIRED by the namespace fixup process: see 5.7.3 Namespace Fixup.

The xsl:copy instruction has an optional inherit-namespaces attribute, with the value yes or no. The default value is yes. The attribute is
used only when copying element nodes. If the value is set to yes, or is omitted, then the namespace nodes created for the newly constructed
element (whether these were copied from those of the source node, or generated as a result of namespace fixup) are copied to the children
and descendants of the newly constructed element, as described in 5.7.1 Constructing Complex Content. If the value is set to no, then these
namespace nodes are not automatically copied to the children. This may result in namespace undeclarations (such as xmlns="" or, in the
case of XML Namespaces 1.1, xmlns:p="") appearing on the child elements when a final result tree is serialized.

[ERR XTTE0950] It is a type error to use the xsl:copy or xsl:copy-of instruction to copy a node that has namespace-sensitive content if the
copy-namespaces attribute has the value no and its explicit or implicit validation attribute has the value preserve. It is also a type error if
either of these instructions (with validation="preserve") is used to copy an attribute having namespace-sensitive content, unless the parent
element is also copied. A node has namespace-sensitive content if its typed value contains an item of type xs:QName or xs:NOTATION or a
type derived therefrom. The reason this is an error is because the validity of the content depends on the namespace context being
preserved.

Note:

When attribute nodes are copied, whether with xsl:copy or with xsl:copy-of, the processor does not automatically copy any associated
namespace information. The namespace used in the attribute name itself will be declared by virtue of the namespace fixup process (see
5.7.3 Namespace Fixup) when the attribute is added to an element in the result tree, but if namespace prefixes are used in the content
of the attribute (for example, if the value of the attribute is an XPath expression) then it is the responsibility of the stylesheet author to
ensure that suitable namespace nodes are added to the result tree. This can be achieved by copying the namespace nodes using
xsl:copy, or by generating them using xsl:namespace.

The optional attributes type and validation may be used on the xsl:copy instruction to validate the contents of an element, attribute or
document node against a type definition, element declaration, or attribute declaration in a schema, and thus to determine the type annotation
that the new copy of an element or attribute node will carry. These attributes are ignored when copying an item that is not an element,
attribute or document node. When the node being copied is an element or document node, these attributes also affect the type annotation
carried by any elements and attributes that have the copied element or document node as an ancestor. These two attributes are both
optional, and if one is specified then the other MUST be omitted. The permitted values of these attributes and their semantics are described in
19.2 Validation.

Note:

The final type annotation of the node in the result tree also depends on the type and validation attributes of the instructions used to
create the ancestors of the node.

The base URI of a node is copied, except in the case of an element node having an xml:base attribute, in which case the base URI of the
new node is taken as the value of the xml:base attribute, resolved if it is relative against the base URI of the xsl:copy instruction. If the
copied node is subsequently attached as a child to a new element or document node, the final copy of the node inherits its base URI from its
parent node, unless this is overridden using an xml:base attribute.

When an xml:id attribute is copied, using either the xsl:copy or xsl:copy-of instruction, it is implementation-defined whether the value of
the attribute is subjected to attribute value normalization (that is, effectively applying the normalize-spaceFO function).

Note:

In most cases the value will already have been subjected to attribute value normalization on the source tree, but if this processing has
not been performed on the source tree, it is not an error for it to be performed on the result tree.

11.9.2 Deep Copy

<!-- Category: instruction -->
<xsl:copy-of
 select = expression
 copy-namespaces? = "yes" | "no"
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip" />

The xsl:copy-of instruction can be used to construct a copy of a sequence of nodes and/or atomic values, with each new node containing
copies of all the children, attributes, and (by default) namespaces of the original node, recursively. The result of evaluating the instruction is
a sequence of items corresponding one-to-one with the supplied sequence, and retaining its order.

The REQUIRED select attribute contains an expression, whose value may be any sequence of nodes and atomic values. The items in this
sequence are processed as follows:

If the item is an element node, a new element is constructed and appended to the result sequence. The new element will have the
same expanded-QName as the original, and it will have deep copies of the attribute nodes and children of the element node.
The new element will also have namespace nodes copied from the original element node, unless they are excluded by specifying
copy-namespaces="no". If this attribute is omitted, or takes the value yes, then all the namespace nodes of the original element are
copied to the new element. If it takes the value no, then none of the namespace nodes are copied: however, namespace nodes will still
be created in the result tree as REQUIRED by the namespace fixup process: see 5.7.3 Namespace Fixup. This attribute affects all

Page 72 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

elements copied by this instruction: both elements selected directly by the select expression, and elements that are descendants of
nodes selected by the select expression.
The new element will have the same values of the is-id, is-idrefs, and nilled properties as the original element.
If the item is a document node, the instruction adds a new document node to the result sequence; the children of this document node
will be one-to-one copies of the children of the original document node (each copied according to the rules for its own node kind).
If the item is an attribute or namespace node, or a text node, a comment, or a processing instruction, the same rules apply as with
xsl:copy (see 11.9.1 Shallow Copy).
If the item is an atomic value, the value is appended to the result sequence, as with xsl:sequence.

The optional attributes type and validation may be used on the xsl:copy-of instruction to validate the contents of an element, attribute or
document node against a type definition, element declaration, or attribute declaration in a schema and thus to determine the type annotation
that the new copy of an element or attribute node will carry. These attributes are applied individually to each element, attribute, and
document node that is selected by the expression in the select attribute. These attributes are ignored when copying an item that is not an
element, attribute or document node.

The specified type and validation apply directly only to elements, attributes and document nodes created as copies of nodes actually
selected by the select expression, they do not apply to nodes that are implicitly copied because they have selected nodes as an ancestor.
However, these attributes do indirectly affect the type annotation carried by such implicitly copied nodes, as a consequence of the validation
process.

These two attributes are both optional, and if one is specified then the other MUST be omitted. The permitted values of these attributes and
their semantics are described in 19.2 Validation.

Errors may occur when copying namespace-sensitive elements or attributes using validation="preserve". [see ERR XTTE0950].

The base URI of a node is copied, except in the case of an element node having an xml:base attribute, in which case the base URI of the
new node is taken as the value of the xml:base attribute, resolved if it is relative against the base URI of the xsl:copy-of instruction. If the
copied node is subsequently attached as a child to a new element or document node, the final copy of the node inherits its base URI from its
parent node, unless this is overridden using an xml:base attribute.

11.10 Constructing Sequences

<!-- Category: instruction -->
<xsl:sequence
 select = expression>
 <!-- Content: xsl:fallback* -->
</xsl:sequence>

The xsl:sequence instruction may be used within a sequence constructor to construct a sequence of nodes and/or atomic values. This
sequence is returned as the result of the instruction. Unlike most other instructions, xsl:sequence can return a sequence containing existing
nodes, rather than constructing new nodes. When xsl:sequence is used to add atomic values to a sequence, the effect is very similar to the
xsl:copy-of instruction.

The items comprising the result sequence are selected using the select attribute.

Any contained xsl:fallback instructions are ignored by an XSLT 2.0 processor, but can be used to define fallback behavior for an XSLT 1.0
processor running in forwards compatibility mode.

Example: Constructing a Sequence of Integers

For example, the following code:

<xsl:variable name="values" as="xs:integer*">
 <xsl:sequence select="(1,2,3,4)"/>
 <xsl:sequence select="(8,9,10)"/>
</xsl:variable>
<xsl:value-of select="sum($values)"/>

produces the output: 37

Example: Using xsl:for-each to Construct a Sequence

The following code constructs a sequence containing the value of the @price attribute for selected elements (which we assume to be
typed as xs:decimal), or a computed price for those elements that have no @price attribute. It then returns the average price:

<xsl:variable name="prices" as="xs:decimal*">
 <xsl:for-each select="//product">
 <xsl:choose>
 <xsl:when test="@price">
 <xsl:sequence select="@price"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:sequence select="@cost * 1.5"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
</xsl:variable>
<xsl:value-of select="avg($prices)"/>

Page 73 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Note that the existing @price attributes could equally have been added to the $prices sequence using xsl:copy-of or xsl:value-of.
However, xsl:copy-of would create a copy of the attribute node, which is not needed in this situation, while xsl:value-of would create
a new text node, which then has to be converted to an xs:decimal. Using xsl:sequence, which in this case atomizes the existing
attribute node and adds an xs:decimal atomic value to the result sequence, is a more direct way of achieving the same result.

This example could alternatively be solved at the XPath level:

<xsl:value-of select="avg(//product/(+@price, @cost*1.5)[1])"/>

(The apparently redundant + operator is there to atomize the attribute value: the expression on the right hand side of the / operator must
not return a mixture of nodes and atomic values.)

12 Numbering
<!-- Category: instruction -->
<xsl:number
 value? = expression
 select? = expression
 level? = "single" | "multiple" | "any"
 count? = pattern
 from? = pattern
 format? = { string }
 lang? = { nmtoken }
 letter-value? = { "alphabetic" | "traditional" }
 ordinal? = { string }
 grouping-separator? = { char }
 grouping-size? = { number } />

The xsl:number instruction is used to create a formatted number. The result of the instruction is a newly constructed text node containing the
formatted number as its string value.

[DEFINITION: The xsl:number instruction performs two tasks: firstly, determining a place marker (this is a sequence of integers, to allow for
hierarchic numbering schemes such as 1.12.2 or 3(c)ii), and secondly, formatting the place marker for output as a text node in the result
sequence.] The place marker to be formatted can either be supplied directly, in the value attribute, or it can be computed based on the
position of a selected node within the tree that contains it.

[ERR XTSE0975] It is a static error if the value attribute of xsl:number is present unless the select, level, count, and from attributes are all
absent.

Note:

The facilities described in this section are specifically designed to enable the calculation and formatting of section numbers, paragraph
numbers, and the like. For formatting of other numeric quantities, the format-number function may be more suitable: see 16.4 Number
Formatting.

12.1 Formatting a Supplied Number

The place marker to be formatted may be specified by an expression. The value attribute contains the expression. The value of this
expression is atomized using the procedure defined in [XPath 2.0], and each value $V in the atomized sequence is then converted to the
integer value returned by the XPath expression xs:integer(round(number($V))). The resulting sequence of integers is used as the place
marker to be formatted.

If backwards compatible behavior is enabled for the instruction, then:

all items in the atomized sequence after the first are discarded;
If the atomized sequence is empty, it is replaced by a sequence containing the xs:double value NaN as its only item;
If any value in the sequence cannot be converted to an integer (this includes the case where the sequence contains a NaN value) then
the string NaN is inserted into the formatted result string in its proper position. The error described in the following paragraph does not
apply in this case.

[ERR XTDE0980] It is a non-recoverable dynamic error if any undiscarded item in the atomized sequence supplied as the value of the value
attribute of xsl:number cannot be converted to an integer, or if the resulting integer is less than 0 (zero).

Note:

The value zero does not arise when numbering nodes in a source document, but it can arise in other numbering sequences. It is
permitted specifically because the rules of the xsl:number instruction are also invoked by functions such as format-time: the minutes
and seconds component of a time value can legitimately be zero.

The resulting sequence is formatted as a string using the effective values of the attributes specified in 12.3 Number to String Conversion
Attributes; each of these attributes is interpreted as an attribute value template. After conversion, the xsl:number element constructs a new
text node containing the resulting string, and returns this node.

Example: Numbering a Sorted List

The following example numbers a sorted list:

<xsl:template match="items">
 <xsl:for-each select="item">
 <xsl:sort select="."/>
 <p>
 <xsl:number value="position()" format="1. "/>

Page 74 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 <xsl:value-of select="."/>
 </p>
 </xsl:for-each>
</xsl:template>

12.2 Numbering based on Position in a Document

If no value attribute is specified, then the xsl:number instruction returns a new text node containing a formatted place marker that is based on
the position of a selected node within its containing document. If the select attribute is present, then the expression contained in the select
attribute is evaluated to determine the selected node. If the select attribute is omitted, then the selected node is the context node.

[ERR XTTE0990] It is a type error if the xsl:number instruction is evaluated, with no value or select attribute, when the context item is not a
node.

[ERR XTTE1000] It is a type error if the result of evaluating the select attribute of the xsl:number instruction is anything other than a single
node.

The following attributes control how the selected node is to be numbered:

The level attribute specifies rules for selecting the nodes that are taken into account in allocating a number; it has the values single,
multiple or any. The default is single.
The count attribute is a pattern that specifies which nodes are to be counted at those levels. If count attribute is not specified, then it
defaults to the pattern that matches any node with the same node kind as the selected node and, if the selected node has an
expanded-QName, with the same expanded-QName as the selected node.
The from attribute is a pattern that specifies where counting starts.

In addition, the attributes specified in 12.3 Number to String Conversion Attributes are used for number to string conversion, as in the case
when the value attribute is specified.

The xsl:number element first constructs a sequence of positive integers using the level, count and from attributes. Where level is single or
any, this sequence will either be empty or contain a single number; where level is multiple, the sequence may be of any length. The
sequence is constructed as follows:

Let matches-count($node) be a function that returns true if and only if the given node $node matches the pattern given in the count attribute,
or the implied pattern (according to the rules given above) if the count attribute is omitted.

Let matches-from($node) be a function that returns true if and only if the given node $node matches the pattern given in the from attribute, or
if $node is the root node of a tree. If the from attribute is omitted, then the function returns true if and only if $node is the root node of a tree.

Let $S be the selected node.

When level="single":

Let $A be the node sequence selected by the following expression:
 $S/ancestor-or-self::node()[matches-count(.)][1]
(this selects the innermost ancestor-or-self node that matches the count pattern)
Let $F be the node sequence selected by the expression
 $S/ancestor-or-self::node()[matches-from(.)][1]
(this selects the innermost ancestor-or-self node that matches the from pattern):
Let $AF be the value of:
 $A[ancestor-or-self::node()[. is $F]]
(this selects $A if it is in the subtree rooted at $F, or the empty sequence otherwise)
If $AF is empty, return the empty sequence, ()
Otherwise return the value of:
 1 + count($AF/preceding-sibling::node()[matches-count(.)])
(the number of preceding siblings of the counted node that match the count pattern, plus one).

When level="multiple":

Let $A be the node sequence selected by the expression
 $S/ancestor-or-self::node()[matches-count(.)]
(the set of ancestor-or-self nodes that match the count pattern)
Let $F be the node sequence selected by the expression
 $S/ancestor-or-self::node()[matches-from(.)][1]
(the innermost ancestor-or-self node that matches the from pattern)
Let $AF be the value of
 $A[ancestor-or-self::node()[. is $F]]
(the nodes selected in the first step that are in the subtree rooted at the node selected in the second step)
Return the result of the expression
 for $af in $AF return 1+count($af/preceding-sibling::node()[matches-count(.)])
(a sequence of integers containing, for each of these nodes, one plus the number of preceding siblings that match the count pattern)

When level="any":

Let $A be the node sequence selected by the expression
 $S/(preceding::node()|ancestor-or-self::node())[matches-count(.)]
(the set of nodes consisting of the selected node together with all nodes, other than attributes and namespaces, that precede the
selected node in document order, provided that they match the count pattern)

Page 75 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Let $F be the node sequence selected by the expression
 $S/(preceding::node()|ancestor::node())[matches-from(.)][last()]
(the last node in document order that matches the from pattern and that precedes the selected node, using the same definition)
Let $AF be the node sequence $A[. is $F or . >> $F].
(the nodes selected in the first step, excluding those that precede the node selected in the second step)
If $AF is empty, return the empty sequence, ()
Otherwise return the value of the expression count($AF)

The sequence of numbers (the place marker) is then converted into a string using the effective values of the attributes specified in 12.3
Number to String Conversion Attributes; each of these attributes is interpreted as an attribute value template. After conversion, the resulting
string is used to create a text node, which forms the result of the xsl:number instruction.

Example: Numbering the Items in an Ordered List

The following will number the items in an ordered list:

<xsl:template match="ol/item">
 <fo:block>
 <xsl:number/>
 <xsl:text>. </xsl:text>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

Example: Multi-Level Numbering

The following two rules will number title elements. This is intended for a document that contains a sequence of chapters followed by a
sequence of appendices, where both chapters and appendices contain sections, which in turn contain subsections. Chapters are
numbered 1, 2, 3; appendices are numbered A, B, C; sections in chapters are numbered 1.1, 1.2, 1.3; sections in appendices are
numbered A.1, A.2, A.3. Subsections within a chapter are numbered 1.1.1, 1.1.2, 1.1.3; subsections within an appendix are numbered
A.1.1, A.1.2, A.1.3.

<xsl:template match="title">
 <fo:block>
 <xsl:number level="multiple"
 count="chapter|section|subsection"
 format="1.1 "/>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

<xsl:template match="appendix//title" priority="1">
 <fo:block>
 <xsl:number level="multiple"
 count="appendix|section|subsection"
 format="A.1 "/>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

Example: Numbering Notes within a Chapter

This example numbers notes sequentially within a chapter:

<xsl:template match="note">
 <fo:block>
 <xsl:number level="any" from="chapter" format="(1) "/>
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

12.3 Number to String Conversion Attributes

The following attributes are used to control conversion of a sequence of numbers into a string. The numbers are integers greater than or
equal to 0 (zero). The attributes are all optional.

The main attribute is format. The default value for the format attribute is 1. The format attribute is split into a sequence of tokens where
each token is a maximal sequence of alphanumeric characters or a maximal sequence of non-alphanumeric characters. Alphanumeric
means any character that has a Unicode category of Nd, Nl, No, Lu, Ll, Lt, Lm or Lo. The alphanumeric tokens (format tokens) indicate the
format to be used for each number in the sequence; in most cases the format token is the same as the required representation of the
number 1 (one).

Each non-alphanumeric token is either a prefix, a separator, or a suffix. If there is a non-alphanumeric token but no format token, then the
single non-alphanumeric token is used as both the prefix and the suffix. The prefix, if it exists, is the non-alphanumeric token that precedes
the first format token: the prefix always appears exactly once in the constructed string, at the start. The suffix, if it exists, is the non-

Page 76 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

alphanumeric token that follows the last format token: the suffix always appears exactly once in the constructed string, at the end. All other
non-alphanumeric tokens (those that occur between two format tokens) are separator tokens and are used to separate numbers in the
sequence.

The nth format token is used to format the nth number in the sequence. If there are more numbers than format tokens, then the last format
token is used to format remaining numbers. If there are no format tokens, then a format token of 1 is used to format all numbers. Each
number after the first is separated from the preceding number by the separator token preceding the format token used to format that number,
or, if that is the first format token, then by . (dot).

Example: Formatting a List of Numbers

Given the sequence of numbers 5, 13, 7 and the format token A-001(i), the output will be the string E-013(vii)

Format tokens are interpreted as follows:

Any token where the last character has a decimal digit value of 1 (as specified in the Unicode character property database), and the
Unicode value of preceding characters is one less than the Unicode value of the last character generates a decimal representation of
the number where each number is at least as long as the format token. The digits used in the decimal representation are the set of
digits containing the digit character used in the format token. Thus, a format token 1 generates the sequence 0 1 2 ... 10 11 12 ...,
and a format token 01 generates the sequence 00 01 02 ... 09 10 11 12 ... 99 100 101. A format token of ١ (Arabic-Indic
digit one) generates the sequence ١ then ٢ then ٣ ...
A format token A generates the sequence A B C ... Z AA AB AC....
A format token a generates the sequence a b c ... z aa ab ac....
A format token i generates the sequence i ii iii iv v vi vii viii ix x
A format token I generates the sequence I II III IV V VI VII VIII IX X
A format token w generates numbers written as lower-case words, for example in English, one two three four ...
A format token W generates numbers written as upper-case words, for example in English, ONE TWO THREE FOUR ...
A format token Ww generates numbers written as title-case words, for example in English, One Two Three Four ...
Any other format token indicates a numbering sequence in which that token represents the number 1 (one) (but see the note below). It
is implementation-defined which numbering sequences, additional to those listed above, are supported. If an implementation does not
support a numbering sequence represented by the given token, it MUST use a format token of 1.

Note:
In some traditional numbering sequences additional signs are added to denote that the letters should be interpreted as numbers;
these are not included in the format token. An example, see also the example below, is classical Greek where a dexia keraia and
sometimes an aristeri keraia is added.

For all format tokens other than the first kind above (one that consists of decimal digits), there MAY be implementation-defined lower and
upper bounds on the range of numbers that can be formatted using this format token; indeed, for some numbering sequences there may be
intrinsic limits. For example, the formatting token ① (circled digit one) has a range of 1 to 20 imposed by the Unicode character
repertoire. For the numbering sequences described above any upper bound imposed by the implementation MUST NOT be less than 1000
(one thousand) and any lower bound must not be greater than 1. Numbers that fall outside this range MUST be formatted using the format
token 1. The numbering sequence associated with the format token 1 has a lower bound of 0 (zero).

The above expansions of numbering sequences for format tokens such as a and i are indicative but not prescriptive. There are various
conventions in use for how alphabetic sequences continue when the alphabet is exhausted, and differing conventions for how roman
numerals are written (for example, IV versus IIII as the representation of the number 4). Sometimes alphabetic sequences are used that
omit letters such as i and o. This specification does not prescribe the detail of any sequence other than those sequences consisting entirely
of decimal digits.

Many numbering sequences are language-sensitive. This applies especially to the sequence selected by the tokens w, W and Ww. It also
applies to other sequences, for example different languages using the Cyrillic alphabet use different sequences of characters, each starting
with the letter #x410 (Cyrillic capital letter A). In such cases, the lang attribute specifies which language's conventions are to be used; it has
the same range of values as xml:lang (see [XML 1.0]). If no lang value is specified, the language that is used is implementation-defined.
The set of languages for which numbering is supported is implementation-defined. If a language is requested that is not supported, the
processor uses the language that it would use if the lang attribute were omitted.

If the optional ordinal attribute is present, and if its value is not a zero-length string, this indicates a request to output ordinal numbers rather
than cardinal numbers. For example, in English, the value ordinal="yes" when used with the format token 1 outputs the sequence 1st 2nd
3rd 4th ..., and when used with the format token w outputs the sequence first second third fourth In some languages, ordinal
numbers vary depending on the grammatical context, for example they may have different genders and may decline with the noun that they
qualify. In such cases the value of the ordinal attribute may be used to indicate the variation of the ordinal number required. The way in
which the variation is indicated will depend on the conventions of the language. For inflected languages that vary the ending of the word, the
preferred approach is to indicate the required ending, preceded by a hyphen: for example in German, appropriate values are -e, -er, -es,
-en. It is implementation-defined what combinations of values of the format token, the language, and the ordinal attribute are supported. If
ordinal numbering is not supported for the combination of the format token, the language, and the actual value of the ordinal attribute, the
request is ignored and cardinal numbers are generated instead.

Example: Ordinal Numbering in Italian

The specification format="1" ordinal="-º" lang="it", if supported, should produce the sequence:

1º 2º 3º 4º ...

The specification format="Ww" ordinal="-o" lang="it", if supported, should produce the sequence:

Primo Secondo Terzo Quarto Quinto ...

Page 77 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The letter-value attribute disambiguates between numbering sequences that use letters. In many languages there are two commonly used
numbering sequences that use letters. One numbering sequence assigns numeric values to letters in alphabetic sequence, and the other
assigns numeric values to each letter in some other manner traditional in that language. In English, these would correspond to the numbering
sequences specified by the format tokens a and i. In some languages, the first member of each sequence is the same, and so the format
token alone would be ambiguous. A value of alphabetic specifies the alphabetic sequence; a value of traditional specifies the other
sequence. If the letter-value attribute is not specified, then it is implementation-dependent how any ambiguity is resolved.

Note:

Implementations may use extension attributes on xsl:number to provide additional control over the way in which numbers are formatted.

The grouping-separator attribute gives the separator used as a grouping (for example, thousands) separator in decimal numbering
sequences, and the optional grouping-size specifies the size (normally 3) of the grouping. For example, grouping-separator="," and
grouping-size="3" would produce numbers of the form 1,000,000 while grouping-separator="." and grouping-size="2" would produce
numbers of the form 1.00.00.00. If only one of the grouping-separator and grouping-size attributes is specified, then it is ignored.

Example: Format Tokens and the Resulting Sequences

These examples use non-Latin characters which might not display correctly in all browsers, depending on the system configuration.

Note that Glassical Greek is an example where the format token is not the same as the representation of the number 1.

13 Sorting

[DEFINITION: A sort key specification is a sequence of one or more adjacent xsl:sort elements which together define rules for sorting the
items in an input sequence to form a sorted sequence.]

[DEFINITION: Within a sort key specification, each xsl:sort element defines one sort key component.] The first xsl:sort element specifies
the primary component of the sort key specification, the second xsl:sort element specifies the secondary component of the sort key
specification and so on.

A sort key specification may occur immediately within an xsl:apply-templates, xsl:for-each, xsl:perform-sort, or xsl:for-each-group
element.

Note:

When used within xsl:for-each, xsl:for-each-group, or xsl:perform-sort, xsl:sort elements must occur before any other children.

13.1 The xsl:sort Element

<xsl:sort
 select? = expression
 lang? = { nmtoken }
 order? = { "ascending" | "descending" }
 collation? = { uri }
 stable? = { "yes" | "no" }
 case-order? = { "upper-first" | "lower-first" }
 data-type? = { "text" | "number" | qname-but-not-ncname }>
 <!-- Content: sequence-constructor -->
</xsl:sort>

Description Format Token Sequence

French cardinal words format="Ww" lang="fr" Un, Deux, Trois, Quatre

German ordinal words format="w" ordinal="-e"
lang="de" erste, zweite, dritte, vierte

Katakana numbering format="ア"

ア, イ, ウ, エ, オ, カ, キ, ク, ケ, コ, サ, シ, ス, セ, ソ, タ, チ, ツ, テ, ト, ナ,
ニ, ヌ, ネ, ノ, ハ, ヒ, フ, ヘ, ホ, マ, ミ, ム, メ, モ, ヤ, ユ, ヨ, ラ, リ, ル, レ,
ロ, ワ, ヰ, ヱ, ヲ, ン

Katakana numbering
in iroha order

format="イ"

イ, ロ, ハ, ニ, ホ, ヘ, ト, チ, リ, ヌ, ル, ヲ, ワ, カ, ヨ, タ, レ, ソ, ツ, ネ, ナ,
ラ, ム, ウ, ヰ, ノ, オ, ク, ヤ, マ, ケ, フ, コ, エ, テ, ア, サ, キ, ユ, メ, ミ, シ,
ヱ, ヒ, モ, セ, ス

Thai numbering format="๑" ๑, ๒, ๓, ๔, ๕, ๖, ๗, ๘, ๙, ๑๐, ๑๑, ๑๒, ๑๓, ๑๔, ๑๕, ๑๖, ๑๗, ๑๘, ๑๙, ๒๐

Traditional Hebrew
numbering

format="א" letter-
value="traditional" כ, יט, יח, יז, טז, טו, יד, יג, יב, יא ,י, ט, ח, ז, ו, ה, ד, ג, ב, א

Traditional Georgian
numbering

format="ა" letter-
value="traditional" ა, ბ, გ, დ, ე, ვ, ზ, ჱ, თ, ი, ია, იბ, იგ, იდ, იე, ივ, იზ, იჱ, ით, კ

Classical Greek
numbering (see note)

format="α" letter-
value="traditional" αʹ, βʹ, γʹ, δʹ, εʹ, ϛʹ, ζʹ, ηʹ, θʹ, ιʹ, ιαʹ, ιβʹ, ιγʹ, ιδʹ, ιεʹ, ιϛʹ, ιζʹ, ιηʹ, ιθʹ, κʹ

Old Slavic numbering format="а" letter-
value="traditional" А, В, Г, Д, Е, Ѕ, З, И, Ѳ, Ӏ, АӀ, ВӀ, ГӀ, ДӀ, ЕӀ, ЅӀ, ЗӀ, ИӀ, ѲӀ, К

Page 78 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The xsl:sort element defines a sort key component. A sort key component specifies how a sort key value is to be computed for each item
in the sequence being sorted, and also how two sort key values are to be compared.

The value of a sort key component is determined either by its select attribute, or by the contained sequence constructor. If neither is
present, the default is select=".", which has the effect of sorting on the actual value of the item if it is an atomic value, or on the typed-value
of the item if it is a node. If a select attribute is present, its value MUST be an XPath expression.

[ERR XTSE1015] It is a static error if an xsl:sort element with a select attribute has non-empty content.

Those attributes of the xsl:sort elements whose values are attribute value templates are evaluated using the same focus as is used to
evaluate the select attribute of the containing instruction (specifically, xsl:apply-templates, xsl:for-each, xsl:for-each-group, or
xsl:perform-sort).

The stable attribute is permitted only on the first xsl:sort element within a sort key specification

[ERR XTSE1017] It is a static error if an xsl:sort element other than the first in a sequence of sibling xsl:sort elements has a stable
attribute.

[DEFINITION: A sort key specification is said to be stable if its first xsl:sort element has no stable attribute, or has a stable attribute whose
effective value is yes.]

13.1.1 The Sorting Process

[DEFINITION: The sequence to be sorted is referred to as the initial sequence.]

[DEFINITION: The sequence after sorting as defined by the xsl:sort elements is referred to as the sorted sequence.]

[DEFINITION: For each item in the initial sequence, a value is computed for each sort key component within the sort key specification. The
value computed for an item by using the Nth sort key component is referred to as the Nth sort key value of that item.]

The items in the initial sequence are ordered into a sorted sequence by comparing their sort key values. The relative position of two items A
and B in the sorted sequence is determined as follows. The first sort key value of A is compared with the first sort key value of B, according
to the rules of the first sort key component. If, under these rules, A is less than B, then A will precede B in the sorted sequence, unless the
order attribute of this sort key component specifies descending, in which case B will precede A in the sorted sequence. If, however, the
relevant sort key values compare equal, then the second sort key value of A is compared with the second sort key value of B, according to
the rules of the second sort key component. This continues until two sort key values are found that compare unequal. If all the sort key
values compare equal, and the sort key specification is stable, then A will precede B in the sorted sequence if and only if A preceded B in the
initial sequence. If all the sort key values compare equal, and the sort key specification is not stable, then the relative order of A and B in the
sorted sequence is implementation-dependent.

Note:

If two items have equal sort key values, and the sort is stable, then their order in the sorted sequence will be the same as their order in
the initial sequence, regardless of whether order="descending" was specified on any or all of the sort key components.

The Nth sort key value is computed by evaluating either the select attribute or the contained sequence constructor of the Nth xsl:sort
element, or the expression . (dot) if neither is present. This evaluation is done with the focus set as follows:

The context item is the item in the initial sequence whose sort key value is being computed.
The context position is the position of that item in the initial sequence.
The context size is the size of the initial sequence.

Note:

As in any other XPath expression, the current function may be used within the select expression of xsl:sort to refer to the item that is
the context item for the expression as a whole; that is, the item whose sort key value is being computed.

The sort key values are atomized, and are then compared. The way they are compared depends on their data type, as described in the next
section.

13.1.2 Comparing Sort Key Values

It is possible to force the system to compare sort key values using the rules for a particular data type by including a cast as part of the sort
key component. For example, <xsl:sort select="xs:date(@dob)"/> will force the attributes to be compared as dates. In the absence of
such a cast, the sort key values are compared using the rules appropriate to their data type. Any values of type xs:untypedAtomic are cast to
xs:string.

For backwards compatibility with XSLT 1.0, the data-type attribute remains available. If this has the effective value text, the atomized sort
key values are converted to strings before being compared. If it has the effective value number, the atomized sort key values are converted to
doubles before being compared. The conversion is done by using the stringFO or numberFO function as appropriate. If the data-type attribute
has any other effective value, then the value MUST be a lexical QName with a non-empty prefix, and the effect of the attribute is
implementation-defined.

[ERR XTTE1020] If any sort key value, after atomization and any type conversion REQUIRED by the data-type attribute, is a sequence
containing more than one item, then the effect depends on whether the xsl:sort element is evaluated with backwards compatible behavior.
With backwards compatible behavior, the effective sort key value is the first item in the sequence. In other cases, this is a type error.

The set of sort key values (after any conversion) is first divided into two categories: empty values, and ordinary values. The empty sort key
values represent those items where the sort key value is an empty sequence. These values are considered for sorting purposes to be equal
to each other, but less than any other value. The remaining values are classified as ordinary values.

[ERR XTDE1030] It is a non-recoverable dynamic error if, for any sort key component, the set of sort key values evaluated for all the items in
the initial sequence, after any type conversion requested, contains a pair of ordinary values for which the result of the XPath lt operator is
an error.

Page 79 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Note:

The above error condition may occur if the values to be sorted are of a type that does not support ordering (for example, xs:QName) or if
the sequence is heterogeneous (for example, if it contains both strings and numbers). The error can generally be prevented by invoking
a cast or constructor function within the sort key component.

The error condition is subject to the usual caveat that a processor is not required to evaluate any expression solely in order to determine
whether it raises an error. For example, if there are several sort key components, then a processor is not required to evaluate or
compare minor sort key values unless the corresponding major sort key values are equal.

In general, comparison of two ordinary values is performed according to the rules of the XPath lt operator. To ensure a total ordering, the
same implementation of the lt operator MUST be used for all the comparisons: the one that is chosen is the one appropriate to the most
specific type to which all the values can be converted by subtype substitution and/or type promotion. For example, if the sequence contains
both xs:decimal and xs:double values, then the values are compared using xs:double comparison, even when comparing two xs:decimal
values. NaN values, for sorting purposes, are considered to be equal to each other, and less than any other numeric value. Special rules
also apply to the xs:string and xs:anyURI types, and types derived by restriction therefrom,, as described in the next section.

13.1.3 Sorting Using Collations

The rules given in this section apply when comparing values whose type is xs:string or a type derived by restriction from xs:string, or
whose type is xs:anyURI or a type derived by restriction from xs:anyURI.

[DEFINITION: Facilities in XSLT 2.0 and XPath 2.0 that require strings to be ordered rely on the concept of a named collation. A collation is a
set of rules that determine whether two strings are equal, and if not, which of them is to be sorted before the other.] A collation is identified
by a URI, but the manner in which this URI is associated with an actual rule or algorithm is implementation-defined.

The one collation URI that must be recognized by every implementation is http://www.w3.org/2005/xpath-
functions/collation/codepoint, which provides the ability to compare strings based on the Unicode codepoint values of the characters in
the string.

For more information about collations, see Section 7.3 Equality and Comparison of StringsFO in [Functions and Operators]. Some
specifications, for example [UNICODE TR10], use the term "collation" to describe rules that can be tailored or parameterized for various
purposes. In this specification, a collation URI refers to a collation in which all such parameters have already been fixed. Therefore, if a
collation URI is specified, other attributes such as case-order and lang are ignored.

Note:

The reason XSLT does not provide detailed mechanisms for defining collating sequences is that many implementations will re-use
collating mechanisms available from the underlying implementation platform (for example, from the operating system or from the run-
time library of a chosen programming language). These will inevitably differ from one XSLT implementation to another.

If the xsl:sort element has a collation attribute, then the strings are compared according to the rules for the named collation: that is, they
are compared using the XPath function call compare($a, $b, $collation).

If the effective value of the collation attribute of xsl:sort is a relative URI, then it is resolved against the base URI of the xsl:sort element.

[ERR XTDE1035] It is a non-recoverable dynamic error if the collation attribute of xsl:sort (after resolving against the base URI) is not a URI
that is recognized by the implementation as referring to a collation.

Note:

It is entirely for the implementation to determine whether it recognizes a particular collation URI. For example, if the implementation
allows collation URIs to contain parameters in the query part of the URI, it is the implementation that determines whether a URI
containing an unknown or invalid parameter is or is not a recognized collation URI. The fact that this error is described as non-
recoverable thus does not prevent an implementation applying a fallback collation if it chooses to do so.

The lang and case-order attributes are ignored if a collation attribute is present. But in the absence of a collation attribute, these
attributes provide input to an implementation-defined algorithm to locate a suitable collation:

The lang attribute indicates that a collation suitable for a particular natural language SHOULD be used. The effective value of the
attribute MUST be a value that would be valid for the xml:lang attribute (see [XML 1.0]).
The case-order attribute indicates whether the desired collation SHOULD sort upper-case letters before lower-case or vice versa. The
effective value of the attribute MUST be either lower-first (indicating that lower-case letters precede upper-case letters in the collating
sequence) or upper-first (indicating that upper-case letters precede lower-case).

If none of the collation, lang or case-order attributes is present, the collation is chosen in an implementation-defined way. It is not
REQUIRED that the default collation for sorting should be the same as the default collation used when evaluating XPath expressions, as
described in 5.4.1 Initializing the Static Context and 3.6.1 The default-collation attribute.

Note:

It is usually appropriate, when sorting, to use a strong collation, that is, one that takes account of secondary differences (accents) and
tertiary differences (case) between strings that are otherwise equal. A weak collation, which ignores such differences, may be more
suitable when comparing strings for equality.

Useful background information on international sorting is provided in [UNICODE TR10]. The case-order attribute may be interpreted as
described in section 6.6 of [UNICODE TR10].

13.2 Creating a Sorted Sequence

<!-- Category: instruction -->
<xsl:perform-sort
 select? = expression>
 <!-- Content: (xsl:sort+, sequence-constructor) -->
</xsl:perform-sort>

Page 80 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The xsl:perform-sort instruction is used to return a sorted sequence.

The initial sequence is obtained either by evaluating the select attribute or by evaluating the contained sequence constructor (but not both).
If there is no select attribute and no sequence constructor then the initial sequence (and therefore, the sorted sequence) is an empty
sequence.

[ERR XTSE1040] It is a static error if an xsl:perform-sort instruction with a select attribute has any content other than xsl:sort and
xsl:fallback instructions.

The result of the xsl:perform-sort instruction is the result of sorting its initial sequence using its contained sort key specification.

Example: Sorting a Sequence of Atomic Values

The following stylesheet function sorts a sequence of atomic values using the value itself as the sort key.

<xsl:function name="local:sort" as="xs:anyAtomicType*">
 <xsl:param name="in" as="xs:anyAtomicType*"/>
 <xsl:perform-sort select="$in">
 <xsl:sort select="."/>
 </xsl:perform-sort>
</xsl:function>

Example: Writing a Function to Perform a Sort

The following example defines a function that sorts books by price, and uses this function to output the five books that have the lowest
prices:

<xsl:function name="bib:books-by-price" as="schema-element(bib:book)*">
 <xsl:param name="in" as="schema-element(bib:book)*"/>
 <xsl:perform-sort select="$in">
 <xsl:sort select="xs:decimal(bib:price)"/>
 </xsl:perform-sort>
</xsl:function>
 ...
 <xsl:copy-of select="bib:books-by-price(//bib:book)[position() = 1 to 5]"/>

13.3 Processing a Sequence in Sorted Order

When used within xsl:for-each or xsl:apply-templates, a sort key specification indicates that the sequence of items selected by that
instruction is to be processed in sorted order, not in the order of the supplied sequence.

Example: Processing Elements in Sorted Order

For example, suppose an employee database has the form

<employees>
 <employee>
 <name>
 <given>James</given>
 <family>Clark</family>
 </name>
 ...
 </employee>
</employees>

Then a list of employees sorted by name could be generated using:

<xsl:template match="employees">

 <xsl:apply-templates select="employee">
 <xsl:sort select="name/family"/>
 <xsl:sort select="name/given"/>
 </xsl:apply-templates>

</xsl:template>

<xsl:template match="employee">

 <xsl:value-of select="name/given"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="name/family"/>

</xsl:template>

When used within xsl:for-each-group, a sort key specification indicates the order in which the groups are to be processed. For the effect of
xsl:for-each-group, see 14 Grouping.

Page 81 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

14 Grouping

The facilities described in this section are designed to allow items in a sequence to be grouped based on common values; for example it
allows grouping of elements having the same value for a particular attribute, or elements with the same name, or elements with common
values for any other expression. Since grouping identifies items with duplicate values, the same facilities also allow selection of the distinct
values in a sequence of items, that is, the elimination of duplicates.

Note:

Simple elimination of duplicates can also be achieved using the function distinct-valuesFO in the core function library: see [Functions
and Operators].

In addition these facilities allow grouping based on sequential position, for example selecting groups of adjacent para elements. The facilities
also provide an easy way to do fixed-size grouping, for example identifying groups of three adjacent nodes, which is useful when arranging
data in multiple columns.

For each group of items identified, it is possible to evaluate a sequence constructor for the group. Grouping is nestable to multiple levels so
that groups of distinct items can be identified, then from among the distinct groups selected, further sub-grouping of distinct items in the
current group can be done.

It is also possible for one item to participate in more than one group.

14.1 The Current Group

current-group() as item()*

[DEFINITION: The evaluation context for XPath expressions includes a component called the current group, which is a sequence. The
current group is the collection of related items that are processed collectively in one iteration of the xsl:for-each-group element.]

While an xsl:for-each-group instruction is being evaluated, the current group will be non-empty. At other times, it will be an empty
sequence.

The function current-group returns the current group.

The function takes no arguments.

[ERR XTSE1060] It is a static error if the current-group function is used within a pattern.

14.2 The Current Grouping Key

current-grouping-key() as xs:anyAtomicType?

[DEFINITION: The evaluation context for XPath expressions includes a component called the current grouping key, which is an atomic
value. The current grouping key is the grouping key shared in common by all the items within the current group.]

While an xsl:for-each-group instruction with a group-by or group-adjacent attribute is being evaluated, the current grouping key will be a
single atomic value. At other times, it will be the empty sequence.

The function current-grouping-key returns the current grouping key.

Although the grouping keys of all items in a group are by definition equal, they are not necessarily identical. For example, one might be an
xs:float while another is an xs:decimal. The current-grouping-key function is defined to return the grouping key of the initial item in the
group, after atomization and casting of xs:untypedAtomic to xs:string.

The function takes no arguments.

[ERR XTSE1070] It is a static error if the current-grouping-key function is used within a pattern.

14.3 The xsl:for-each-group Element

<!-- Category: instruction -->
<xsl:for-each-group
 select = expression
 group-by? = expression
 group-adjacent? = expression
 group-starting-with? = pattern
 group-ending-with? = pattern
 collation? = { uri }>
 <!-- Content: (xsl:sort*, sequence-constructor) -->
</xsl:for-each-group>

This element is an instruction that may be used anywhere within a sequence constructor.

[DEFINITION: The xsl:for-each-group instruction allocates the items in an input sequence into groups of items (that is, it establishes a
collection of sequences) based either on common values of a grouping key, or on a pattern that the initial or final node in a group must
match.] The sequence constructor that forms the content of the xsl:for-each-group instruction is evaluated once for each of these groups.

[DEFINITION: The sequence of items to be grouped, which is referred to as the population, is determined by evaluating the XPath expression
contained in the select attribute.]

[DEFINITION: The population is treated as a sequence; the order of items in this sequence is referred to as population order].

A group is never empty. If the population is empty, the number of groups will be zero. The assignment of items to groups depends on the
group-by, group-adjacent, group-starting-with, and group-ending-with attributes.

Page 82 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

[ERR XTSE1080] These four attributes are mutually exclusive: it is a static error if none of these four attributes is present, or if more than one of
them is present.

[ERR XTSE1090] It is an error to specify the collation attribute if neither the group-by attribute nor group-adjacent attribute is specified.

[DEFINITION: If either of the group-by attribute or group-adjacent attributes is present, then grouping keys are calculated for each item in
the population. The grouping keys are the items in the sequence obtained by evaluating the expression contained in the group-by attribute or
group-adjacent attribute, atomizing the result, and then casting an xs:untypedAtomic value to xs:string.]

When calculating grouping keys for an item in the population, the expression contained in the group-by or group-adjacent attribute is
evaluated with that item as the context item, with its position in population order as the context position, and with the size of the population
as the context size. The resulting sequence is atomized, and each atomic value in the atomized sequence acts as a grouping key for that
item in the population.

If the group-by attribute is present, then an item in the population may have multiple grouping keys: that is, the group-by expression
evaluates to a sequence. The item is included in as many groups as there are distinct grouping keys (which may be zero). If the group-
adjacent attribute is used, then each item in the population MUST have exactly one grouping key value.

[ERR XTTE1100] It is a type error if the grouping key evaluated using the group-adjacent attribute is an empty sequence, or a sequence
containing more than one item.

Grouping keys are compared using the rules for the eq operator appropriate to their dynamic type. Values of type xs:untypedAtomic are cast
to xs:string before the comparison. Two items that are not comparable using the eq operator are considered to be not equal, that is, they
are allocated to different groups. If the values are strings, or untyped atomic values, then if there is a collation attribute the values are
compared using the collation specified as the effective value of the collation attribute, resolved if relative against the base URI of the
xsl:for-each-group element. If there is no collation attribute then the default collation is used.

For the purposes of grouping, the value NaN is considered equal to itself.

[ERR XTDE1110] It is a non-recoverable dynamic error if the collation URI specified to xsl:for-each-group (after resolving against the base
URI) is a collation that is not recognized by the implementation. (For notes, [see ERR XTDE1035].)

For more information on collations, see 13.1.3 Sorting Using Collations.

[ERR XTTE1120] When the group-starting-with or group-ending-with attribute is used, it is a type error if the result of evaluating the select
expression contains an item that is not a node.

If the group-by attribute is present, the items in the population are examined, in population order. For each item J, the expression in the
group-by attribute is evaluated to produce a sequence of zero or more grouping key values. For each one of these grouping keys, if
there is already a group created to hold items having that grouping key value, J is added to that group; otherwise a new group is
created for items with that grouping key value, and J becomes its first member.
An item in the population may thus be assigned to zero, one, or many groups. An item will never be assigned more than once to the
same group; if two or more grouping keys for the same item are equal, then the duplicates are ignored. An item here means the item at
a particular position within the population—if the population contains the same node at several different positions in the sequence then
a group may indeed contain duplicate nodes.
The number of groups will be the same as the number of distinct grouping key values present in the population.
If the group-adjacent attribute is present, the items in the population are examined, in population order. If an item has the same value
for the grouping key as its preceding item within the population (in population order), then it is assigned to the same group as its
preceding item; otherwise a new group is created and the item becomes its first member.
If the group-starting-with attribute is present, then its value MUST be a pattern. In this case, the items in the population MUST all be
nodes.
The nodes in the population are examined in population order. If a node matches the pattern, or is the first node in the population, then
a new group is created and the node becomes its first member. Otherwise, the node is assigned to the same group as its preceding
node within the population.
If the group-ending-with attribute is present, then its value MUST be a pattern. In this case, the items in the population MUST all be
nodes.
The nodes in the population are examined in population order. If a node is the first node in the population, or if the previous node in the
population matches the pattern, then a new group is created and the node becomes its first member. Otherwise, the node is assigned
to the same group as its preceding node within the population.

[DEFINITION: For each group, the item within the group that is first in population order is known as the initial item of the group.]

[DEFINITION: There is an ordering among groups referred to as the order of first appearance. A group G is defined to precede a group H in
order of first appearance if the initial item of G precedes the initial item of H in population order. If two groups G and H have the same initial
item (because the item is in both groups) then G precedes H if the grouping key of G precedes the grouping key of H in the sequence that
results from evaluating the group-by expression of this initial item.]

[DEFINITION: There is another ordering among groups referred to as processing order. If group R precedes group S in processing order,
then in the result sequence returned by the xsl:for-each-group instruction the items generated by processing group R will precede the
items generated by processing group S.]

If there are no xsl:sort elements immediately within the xsl:for-each-group element, the processing order of the groups is the order of first
appearance.

Otherwise, the xsl:sort elements immediately within the xsl:for-each-group element define the processing order of the groups (see 13
Sorting). They do not affect the order of items within each group. Multiple sort key components are allowed, and are evaluated in major-to-
minor order. If two groups have the same values for all their sort key components, they are processed in order of first appearance.

The select expression of an xsl:sort element is evaluated once for each group. During this evaluation, the context item is the initial item of
the group, the context position is the position of this item within the set of initial items (that is, one item for each group in the population) in
population order, the context size is the number of groups, the current group is the group whose sort key value is being determined, and the
current grouping key is the grouping key for that group. If the xsl:for-each-group instruction uses the group-starting-with or group-
ending-with attributes, then the current grouping key is the empty sequence.

Page 83 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Example: Sorting Groups

For example, this means that if the grouping key is @category, you can sort the groups in order of their grouping key by writing
<xsl:sort select="current-grouping-key()"/>; or you can sort the groups in order of size by writing <xsl:sort select="count
(current-group())"/>

The sequence constructor contained in the xsl:for-each-group element is evaluated once for each of the groups, in processing order. The
sequences that result are concatenated, in processing order, to form the result of the xsl:for-each-group element. Within the sequence
constructor, the context item is the initial item of the relevant group, the context position is the position of this item among the sequence of
initial items (one item for each group) arranged in processing order of the groups, the context size is the number of groups, the current group
is the group being processed, and the current grouping key is the grouping key for that group. If the xsl:for-each-group instruction uses the
group-starting-with or group-ending-with attributes, then the current grouping key is the empty sequence. This has the effect that within
the sequence constructor, a call on position() takes successive values 1, 2, ... last().

During the evaluation of a stylesheet function, the current group and current grouping key are set to the empty sequence, and revert to their
previous values on completion of evaluation of the stylesheet function.

On completion of the evaluation of the xsl:for-each-group instruction, the current group and current grouping key revert to their previous
value.

14.4 Examples of Grouping

Example: Grouping Nodes based on Common Values

The following example groups a list of nodes based on common values. The resulting groups are numbered but unsorted, and a total is
calculated for each group.

Source XML document:

<cities>
 <city name="Milano" country="Italia" pop="5"/>
 <city name="Paris" country="France" pop="7"/>
 <city name="München" country="Deutschland" pop="4"/>
 <city name="Lyon" country="France" pop="2"/>
 <city name="Venezia" country="Italia" pop="1"/>
</cities>

More specifically, the aim is to produce a four-column table, containing one row for each distinct country. The four columns are to
contain first, a sequence number giving the number of the row; second, the name of the country, third, a comma-separated alphabetical
list of the city names within that country, and fourth, the sum of the pop attribute for the cities in that country.

Desired output:

<table>
 <tr>
 <th>Position</th>
 <th>Country</th>
 <th>List of Cities</th>
 <th>Population</th>
 </tr>
 <tr>
 <td>1</td>
 <td>Italia</td>
 <td>Milano, Venezia</td>
 <td>6</td>
 </tr>
 <tr>
 <td>2</td>
 <td>France</td>
 <td>Lyon, Paris</td>
 <td>9</td>
 </tr>
 <tr>
 <td>3</td>
 <td>Deutschland</td>
 <td>München</td>
 <td>4</td>
 </tr>
</table>

Solution:

<table xsl:version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <tr>
 <th>Position</th>
 <th>Country</th>
 <th>City List</th>
 <th>Population</th>
 </tr>
 <xsl:for-each-group select="cities/city" group-by="@country">
 <tr>
 <td><xsl:value-of select="position()"/></td>
 <td><xsl:value-of select="@country"/></td>
 <td>
 <xsl:value-of select="current-group()/@name" separator=", "/>
 </td>
 <td><xsl:value-of select="sum(current-group()/@pop)"/></td>

Page 84 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 </tr>
 </xsl:for-each-group>
</table>

Example: A Composite Grouping Key

Sometimes it is necessary to use a composite grouping key: for example, suppose the source document is similar to the one used in the
previous examples, but allows multiple entries for the same country and city, such as:

<cities>
 <city name="Milano" country="Italia" year="1950" pop="5.23"/>
 <city name="Milano" country="Italia" year="1960" pop="5.29"/>
 <city name="Padova" country="Italia" year="1950" pop="0.69"/>
 <city name="Padova" country="Italia" year="1960" pop="0.93"/>
 <city name="Paris" country="France" year="1951" pop="7.2"/>
 <city name="Paris" country="France" year="1961" pop="7.6"/>
</cities>

Now suppose we want to list the average value of @pop for each (country, name) combination. One way to handle this is to concatenate
the parts of the key, for example <xsl:for-each-group select="concat(@country, '/', @name)">. A more flexible solution is to nest
one xsl:for-each-group element directly inside another:

<xsl:for-each-group select="cities/city" group-by="@country">
 <xsl:for-each-group select="current-group()" group-by="@name">
 <p><xsl:value-of select="@name"/>, <xsl:value-of select="@country"/>:
 <xsl:value-of select="avg(current-group()/@pop)"/></p>
 </xsl:for-each-group>
</xsl:for-each-group>

The two approaches are not precisely equivalent. If the code were changed to output the value of position() alongside @name then the
first approach (a single xsl:for-each-group element with a compound key) would number the groups (1, 2, 3), while the second
approach (two nested xsl:for-each-group elements) would number them (1, 2, 1).

Example: Identifying a Group by its Initial Element

The next example identifies a group not by the presence of a common value, but rather by adjacency in document order. A group
consists of an h2 element, followed by all the p elements up to the next h2 element.

Source XML document:

<body>
 <h2>Introduction</h2>
 <p>XSLT is used to write stylesheets.</p>
 <p>XQuery is used to query XML databases.</p>
 <h2>What is a stylesheet?</h2>
 <p>A stylesheet is an XML document used to define a transformation.</p>
 <p>Stylesheets may be written in XSLT.</p>
 <p>XSLT 2.0 introduces new grouping constructs.</p>
</body>

Desired output:

<chapter>
 <section title="Introduction">
 <para>XSLT is used to write stylesheets.</para>
 <para>XQuery is used to query XML databases.</para>
 </section>
 <section title="What is a stylesheet?">
 <para>A stylesheet is an XML document used to define a transformation.</para>
 <para>Stylesheets may be written in XSLT.</para>
 <para>XSLT 2.0 introduces new grouping constructs.</para>
 </section>
</chapter>

Solution:

<xsl:template match="body">
 <chapter>
 <xsl:for-each-group select="*" group-starting-with="h2" >
 <section title="{self::h2}">
 <xsl:for-each select="current-group()[self::p]">
 <para><xsl:value-of select="."/></para>
 </xsl:for-each>
 </section>
 </xsl:for-each-group>
 </chapter>
</xsl:template>

The use of title="{self::h2}" rather than title="{.}" is to handle the case where the first element is not an h2 element.

Page 85 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Example: Identifying a Group by its Final Element

The next example illustrates how a group of related elements can be identified by the last element in the group, rather than the first.
Here the absence of the attribute continued="yes" indicates the end of the group.

Source XML document:

<doc>
 <page continued="yes">Some text</page>
 <page continued="yes">More text</page>
 <page>Yet more text</page>
 <page continued="yes">Some words</page>
 <page continued="yes">More words</page>
 <page>Yet more words</page>
</doc>

Desired output:

<doc>
 <pageset>
 <page>Some text</page>
 <page>More text</page>
 <page>Yet more text</page>
 </pageset>
 <pageset>
 <page>Some words</page>
 <page>More words</page>
 <page>Yet more words</page>
 </pageset>
</doc>

Solution:

<xsl:template match="doc">
<doc>
 <xsl:for-each-group select="*"
 group-ending-with="page[not(@continued='yes')]">
 <pageset>
 <xsl:for-each select="current-group()">
 <page><xsl:value-of select="."/></page>
 </xsl:for-each>
 </pageset>
 </xsl:for-each-group>
</doc>
</xsl:template>

Example: Adding an Element to Several Groups

The next example shows how an item can be added to multiple groups. Book titles will be added to one group for each indexing term
marked up within the title.

Source XML document:

<titles>
 <title>A Beginner's Guide to <ix>Java</ix></title>
 <title>Learning <ix>XML</ix></title>
 <title>Using <ix>XML</ix> with <ix>Java</ix></title>
</titles>

Desired output:

<h2>Java</h2>
 <p>A Beginner's Guide to Java</p>
 <p>Using XML with Java</p>
<h2>XML</h2>
 <p>Learning XML</p>
 <p>Using XML with Java</p>

Solution:

<xsl:template match="titles">
 <xsl:for-each-group select="title" group-by="ix">
 <h2><xsl:value-of select="current-grouping-key()"/></h2>
 <xsl:for-each select="current-group()">
 <p><xsl:value-of select="."/></p>
 </xsl:for-each>
 </xsl:for-each-group>
</xsl:template>

Page 86 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Example: Grouping Alternating Sequences of Elements

In the final example, the membership of a node within a group is based both on adjacency of the nodes in document order, and on
common values. In this case, the grouping key is a boolean condition, true or false, so the effect is that a grouping establishes a
maximal sequence of nodes for which the condition is true, followed by a maximal sequence for which it is false, and so on.

Source XML document:

<p>Do not:

 talk,
 eat, or
 use your mobile telephone

 while you are in the cinema.</p>

Desired output:

<p>Do not:</p>

 talk,
 eat, or
 use your mobile telephone

 <p>while you are in the cinema.</p>

Solution:

This requires creating a p element around the maximal sequence of sibling nodes that does not include a ul or ol element.

This can be done by using group-adjacent, with a grouping key that is true if the element is a ul or ol element, and false otherwise:

<xsl:template match="p">
 <xsl:for-each-group select="node()"
 group-adjacent="self::ul or self::ol">
 <xsl:choose>
 <xsl:when test="current-grouping-key()">
 <xsl:copy-of select="current-group()"/>
 </xsl:when>
 <xsl:otherwise>
 <p>
 <xsl:copy-of select="current-group()"/>
 </p>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each-group>
</xsl:template>

15 Regular Expressions

The core function library for XPath 2.0 defines three functions that make use of regular expressions:

matchesFO returns a boolean result that indicates whether or not a string matches a given regular expression.

replaceFO takes a string as input and returns a string obtained by replacing all substrings that match a given regular expression with a
replacement string.

tokenizeFO returns a sequence of strings formed by breaking a supplied input string at any separator that matches a given regular
expression.

These functions are described in [Functions and Operators].

For more complex string processing than is possible using these functions, XSLT provides an instruction xsl:analyze-string, which is
defined in this section.

The regular expressions used by this instruction, and the flags that control the interpretation of these regular expressions, MUST conform to
the syntax defined in [Functions and Operators] (see Section 7.6.1 Regular Expression SyntaxFO), which is itself based on the syntax defined
in [XML Schema Part 2].

15.1 The xsl:analyze-string instruction

<!-- Category: instruction -->
<xsl:analyze-string
 select = expression
 regex = { string }
 flags? = { string }>
 <!-- Content: (xsl:matching-substring?, xsl:non-matching-substring?, xsl:fallback*) -->
</xsl:analyze-string>

<xsl:matching-substring>
 <!-- Content: sequence-constructor -->
</xsl:matching-substring>

<xsl:non-matching-substring>

Page 87 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 <!-- Content: sequence-constructor -->
</xsl:non-matching-substring>

The xsl:analyze-string instruction takes as input a string (the result of evaluating the expression in the select attribute) and a regular
expression (the effective value of the regex attribute).

If the result of evaluating the select expression is not a string, it is converted to a string by applying the function conversion rules.

The flags attribute may be used to control the interpretation of the regular expression. If the attribute is omitted, the effect is the same as
supplying a zero-length string. This is interpreted in the same way as the $flags attribute of the functions matches FO, replace FO, and
tokenizeFO. Specifically, if it contains the letter m, the match operates in multiline mode. If it contains the letter s, it operates in dot-all mode. If
it contains the letter i, it operates in case-insensitive mode. If it contains the letter x, then whitespace within the regular expression is ignored.
For more detailed specifications of these modes, see [Functions and Operators] (Section 7.6.1.1 FlagsFO).

Note:

Because the regex attribute is an attribute value template, curly brackets within the regular expression must be doubled. For example, to
match a sequence of one to five characters, write regex=".{{1,5}}". For regular expressions containing many curly brackets it may be
more convenient to use a notation such as regex="{'[0-9]{1,5}[a-z]{3}[0-9]{1,2}'}", or to use a variable.

The content of the xsl:analyze-string instruction must take one of the following forms:

1. A single xsl:matching-substring instruction, followed by zero or more xsl:fallback instructions
2. A single xsl:non-matching-substring instruction, followed by zero or more xsl:fallback instructions
3. A single xsl:matching-substring instruction, followed by a single xsl:non-matching-substring instruction, followed by zero or more

xsl:fallback instructions

[ERR XTSE1130] It is a static error if the xsl:analyze-string instruction contains neither an xsl:matching-substring nor an xsl:non-
matching-substring element.

Any xsl:fallback elements among the children of the xsl:analyze-string instruction are ignored by an XSLT 2.0 processor, but allow
fallback behavior to be defined when the stylesheet is used with an XSLT 1.0 processor operating in forwards-compatible mode.

This instruction is designed to process all the non-overlapping substrings of the input string that match the regular expression supplied.

[ERR XTDE1140] It is a non-recoverable dynamic error if the effective value of the regex attribute does not conform to the REQUIRED syntax for
regular expressions, as specified in [Functions and Operators]. If the regular expression is known statically (for example, if the attribute does
not contain any expressions enclosed in curly brackets) then the processor MAY signal the error as a static error.

[ERR XTDE1145] It is a non-recoverable dynamic error if the effective value of the flags attribute has a value other than the values defined in
[Functions and Operators]. If the value of the attribute is known statically (for example, if the attribute does not contain any expressions
enclosed in curly brackets) then the processor MAY signal the error as a static error.

[ERR XTDE1150] It is a non-recoverable dynamic error if the effective value of the regex attribute is a regular expression that matches a zero-
length string: or more specifically, if the regular expression $r and flags $f are such that matches("", $r, $f) returns true. If the regular
expression is known statically (for example, if the attribute does not contain any expressions enclosed in curly brackets) then the processor
MAY signal the error as a static error.

The xsl:analyze-string instruction starts at the beginning of the input string and attempts to find the first substring that matches the regular
expression. If there are several matches, the first match is defined to be the one whose starting position comes first in the string. If several
alternatives within the regular expression both match at the same position in the input string, then the match that is chosen is the first
alternative that matches. For example, if the input string is The quick brown fox jumps and the regular expression is jump|jumps, then the
match that is chosen is jump.

Having found the first match, the instruction proceeds to find the second and subsequent matches by repeating the search, starting at the first
character that was not included in the previous match.

The input string is thus partitioned into a sequence of substrings, some of which match the regular expression, others which do not match it.
Each substring will contain at least one character. This sequence of substrings is processed using the xsl:matching-substring and xsl:non-
matching-substring child instructions. A matching substring is processed using the xsl:matching-substring element, a non-matching
substring using the xsl:non-matching-substring element. Each of these elements takes a sequence constructor as its content. If the
element is absent, the effect is the same as if it were present with empty content. In processing each substring, the contents of the substring
will be the context item (as a value of type xs:string); the position of the substring within the sequence of matching and non-matching
substrings will be the context position; and the number of matching and non-matching substrings will be the context size.

If the input is a zero-length string, the number of substrings will be zero, so neither the xsl:matching-substring nor xsl:non-matching-
substring elements will be evaluated.

15.2 Captured Substrings

regex-group($group-number as xs:integer) as xs:string

[DEFINITION: While the xsl:matching-substring instruction is active, a set of current captured substrings is available, corresponding to the
parenthesized sub-expressions of the regular expression.] These captured substrings are accessible using the function regex-group. This
function takes an integer argument to identify the group, and returns a string representing the captured substring.

The Nth captured substring (where N > 0) is the string matched by the subexpression contained by the Nth left parenthesis in the regex. The
zeroeth captured substring is the string that matches the entire regex. This means that the value of regex-group(0) is initially the same as
the value of . (dot).

The function returns the zero-length string if there is no captured substring with the relevant number. This can occur for a number of reasons:

1. The number is negative.

Page 88 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

2. The regular expression does not contain a parenthesized sub-expression with the given number.
3. The parenthesized sub-expression exists, and did not match any part of the input string.
4. The parenthesized sub-expression exists, and matched a zero-length substring of the input string.

The set of captured substrings is a context variable with dynamic scope. It is initially an empty sequence. During the evaluation of an
xsl:matching-substring instruction it is set to the sequence of matched substrings for that regex match. During the evaluation of an
xsl:non-matching-substring instruction or a pattern or a stylesheet function it is set to an empty sequence. On completion of an instruction
that changes the value, the variable reverts to its previous value.

The value of the current captured substrings is unaffected through calls of xsl:apply-templates, xsl:call-template, xsl:apply-imports or
xsl:next-match, or by expansion of named attribute sets.

15.3 Examples of Regular Expression Matching

Example: Replacing Characters by Elements

Problem: replace all newline characters in the abstract element by empty br elements:

Solution:

<xsl:analyze-string select="abstract" regex="\n">
 <xsl:matching-substring>

 </xsl:matching-substring>
 <xsl:non-matching-substring>
 <xsl:value-of select="."/>
 </xsl:non-matching-substring>
</xsl:analyze-string>

Example: Recognizing non-XML Markup Structure

Problem: replace all occurrences of [...] in the body by cite elements, retaining the content between the square brackets as the
content of the new element.

Solution:

<xsl:analyze-string select="body" regex="\[(.*?)\]">
 <xsl:matching-substring>
 <cite><xsl:value-of select="regex-group(1)"/></cite>
 </xsl:matching-substring>
 <xsl:non-matching-substring>
 <xsl:value-of select="."/>
 </xsl:non-matching-substring>
</xsl:analyze-string>

Note that this simple approach fails if the body element contains markup that needs to be retained. In this case it is necessary to apply
the regular expression processing to each text node individually. If the [...] constructs span multiple text nodes (for example, because
there are elements within the square brackets) then it probably becomes necessary to make two or more passes over the data.

Example: Parsing a Date

Problem: the input string contains a date such as 23 March 2002. Convert it to the form 2002-03-23.

Solution (with no error handling if the input format is incorrect):

<xsl:variable name="months" select="'January', 'February', 'March', ..."/>

<xsl:analyze-string select="normalize-space($input)"
 regex="([0-9]{{1,2}})\s([A-Z][a-z]+)\s([0-9]{{4}})">
 <xsl:matching-substring>
 <xsl:number value="regex-group(3)" format="0001"/>
 <xsl:text>-</xsl:text>
 <xsl:number value="index-of($months, regex-group(2))" format="01"/>
 <xsl:text>-</xsl:text>
 <xsl:number value="regex-group(1)" format="01"/>
 </xsl:matching-substring>
</xsl:analyze-string>

Note the use of normalize-space to simplify the work done by the regular expression, and the use of doubled curly brackets because
the regex attribute is an attribute value template.

16 Additional Functions

Page 89 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

This section describes XSLT-specific additions to the core function library. Some of these additional functions also make use of information
specified by declarations in the stylesheet; this section also describes these declarations.

16.1 Multiple Source Documents

document($uri-sequence as item()*) as node()*
document($uri-sequence as item()*, $base-node as node()) as node()*

The document function allows access to XML documents identified by a URI.

The first argument contains a sequence of URI references. The second argument, if present, is a node whose base URI is used to resolve
any relative URI references contained in the first argument.

A sequence of absolute URI references is obtained as follows.

For an item in $uri-sequence that is an instance of xs:string, xs:anyURI, or xs:untypedAtomic, the value is cast to xs:anyURI. If the
resulting URI reference is an absolute URI reference then it is used as is. If it is a relative URI reference, then it is resolved against the
base URI of $base-node if supplied, or against the base URI from the static context otherwise (this will usually be the base URI of the
stylesheet module). A relative URI is resolved against a base URI using the rules defined in [RFC3986].
For an item in $uri-sequence that is a node, the node is atomized. The result MUST be a sequence whose items are all instances of
xs:string, xs:anyURI, or xs:untypedAtomic. Each of these values is cast to xs:anyURI, and if the resulting URI reference is an
absolute URI reference then it is used as is. If it is a relative URI reference, then it is resolved against the base URI of $base-node if
supplied, or against the base URI of the node that contained it otherwise.

Note:

The XPath rules for function calling ensure that it is a type error if the supplied value of the second argument is anything other than a
single node. If XPath 1.0 compatibility mode is enabled, then a sequence of nodes may be supplied, and the first node in the sequence
will be used.

Each of these absolute URI references is then processed as follows. Any fragment identifier that is present in the URI reference is removed,
and the resulting absolute URI is cast to a string and then passed to the doc FO function defined in [Functions and Operators]. This returns a
document node. If an error occurs during evaluation of the doc FO function, the processor MAY either signal this error in the normal way, or
MAY recover by ignoring the failure, in which case the failing URI will not contribute any nodes to the result of the document function.

If the URI reference contained no fragment identifier, then this document node is included in the sequence of nodes returned by the
document function.

If the URI reference contained a fragment identifier, then the fragment identifier is interpreted according to the rules for the media type of the
resource representation identified by the URI, and is used to select zero or more nodes that are descendant-or-self nodes of the returned
document node. As described in 2.3 Initiating a Transformation, the media type is available as part of the evaluation context for a
transformation.

[ERR XTRE1160] When a URI reference contains a fragment identifier, it is a recoverable dynamic error if the media type is not one that is
recognized by the processor, or if the fragment identifier does not conform to the rules for fragment identifiers for that media type, or if the
fragment identifier selects something other than a sequence of nodes (for example, if it selects a range of characters within a text node). The
optional recovery action is to ignore the fragment identifier and return the document node. The set of media types recognized by a processor
is implementation-defined.

Note:

The recovery action here is different from XSLT 1.0

The sequence of nodes returned by the function is in document order, with no duplicates. This order has no necessary relationship to the
order in which URIs were supplied in the $uri-sequence argument.

Note:

One effect of these rules is that unless XML entities or xml:base are used, and provided that the base URI of the stylesheet module is
known, document("") refers to the document node of the containing stylesheet module (the definitive rules are in [RFC3986]). The XML
resource containing the stylesheet module is processed exactly as if it were any other XML document, for example there is no special
recognition of xsl:text elements, and no special treatment of comments and processing instructions.

16.2 Reading Text Files

unparsed-text($href as xs:string?) as xs:string?
unparsed-text($href as xs:string?, $encoding as xs:string) as xs:string?

The unparsed-text function reads an external resource (for example, a file) and returns its contents as a string.

The $href argument MUST be a string in the form of a URI. The URI MUST contain no fragment identifier, and MUST identify a resource that
can be read as text. If the URI is a relative URI, then it is resolved relative to the base URI from the static context.

If the value of the $href argument is an empty sequence, the function returns an empty sequence.

Note:

If a different base URI is appropriate (for example, when resolving a relative URI read from a source document) then the relative URI
should be resolved using the resolve-uriFO function before passing it to the unparsed-text function.

The $encoding argument, if present, is the name of an encoding. The values for this attribute follow the same rules as for the encoding
attribute in an XML declaration. The only values which every implementation is REQUIRED to recognize are utf-8 and utf-16.

Page 90 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The encoding of the external resource is determined as follows:

1. external encoding information is used if available, otherwise
2. if the media type of the resource is text/xml or application/xml (see [RFC2376]), or if it matches the conventions text/*+xml or

application/*+xml (see [RFC3023] and/or its successors), then the encoding is recognized as specified in [XML 1.0], otherwise
3. the value of the $encoding argument is used if present, otherwise
4. the processor MAY use implementation-defined heuristics to determine the likely encoding, otherwise
5. UTF-8 is assumed.

Note:

The above rules are chosen for consistency with [XInclude]. Files with an XML media type are treated specially because there are use
cases for this function where the retrieved text is to be included as unparsed XML within a CDATA section of a containing document,
and because processors are likely to be able to reuse the code that performs encoding detection for XML external entities.

[ERR XTDE1170] It is a non-recoverable dynamic error if a URI contains a fragment identifier, or if it cannot be used to retrieve a resource
containing text.

[ERR XTDE1190] It is a non-recoverable dynamic error if a resource contains octets that cannot be decoded into Unicode characters using the
specified encoding, or if the resulting characters are not permitted XML characters. This includes the case where the processor does not
support the requested encoding.

[ERR XTDE1200] It is a non-recoverable dynamic error if the second argument of the unparsed-text function is omitted and the processor
cannot infer the encoding using external information and the encoding is not UTF-8.

The result is a string containing the text of the resource retrieved using the URI.

Note:

If the text file contains characters such as < and &, these will typically be output as < and & when the string is written to a final
result tree and serialized as XML or HTML. If these characters actually represent markup (for example, if the text file contains HTML),
then the stylesheet can attempt to write them as markup to the output file using the disable-output-escaping attribute of the
xsl:value-of instruction (see 20.2 Disabling Output Escaping). Note, however, that implementations are not required to support this
feature.

Example: Copying Unparsed HTML Boilerplate

This example attempts to read an HTML file and copy it, as HTML, to the serialized output file:

<xsl:output method="html"/>

<xsl:template match="/">
 <xsl:value-of select="unparsed-text('header.html', 'iso-8859-1')"
 disable-output-escaping="yes"/>
 <xsl:apply-templates/>
 <xsl:value-of select="unparsed-text('footer.html', 'iso-8859-1')"
 disable-output-escaping="yes"/>
</xsl:template>

Example: Splitting an Input File into a Sequence of Lines

Often it is necessary to split a text file into a sequence of lines, representing each line as a string. This can be achieved by using the
unparsed-text function in conjunction with the XPath tokenizeFO function. For example:

<xsl:for-each select="tokenize(unparsed-text($in), '\r?\n')">
 ...
</xsl:for-each>

Note that the unparsed-text function does not normalize line endings. This example has therefore been written to recognize both Unix
and Windows conventions for end-of-line, namely a single newline (#x0A) character or a carriage return / line feed pair (#x0D #x0A).

Because errors in evaluating the unparsed-text function are non-recoverable, two functions are provided to allow a stylesheet to determine
whether a call with particular arguments would succeed:

unparsed-text-available($href as xs:string?) as xs:boolean

The unparsed-text-available function determines whether a call on the unparsed-text function with identical arguments would return a
string.

If the first argument is an empty sequence, the function returns false. If the second argument is an empty sequence, the function behaves as
if the second argument were omitted.

In other cases, the function returns true if a call on unparsed-text with the same arguments would succeed, and false if a call on unparsed-
text with the same arguments would fail with a non-recoverable dynamic error.

unparsed-text-available($href as xs:string?,
$encoding as xs:string?) as xs:boolean

Page 91 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Note:

This requires that the unparsed-text-available function should actually attempt to read the resource identified by the URI, and check
that it is correctly encoded and contains no characters that are invalid in XML. Implementations may avoid the cost of repeating these
checks for example by caching the validated contents of the resource, to anticipate a subsequent call on the unparsed-text function.
Alternatively, implementations may be able to rewrite an expression such as if (unparsed-text-available(A)) then unparsed-text
(A) else ... to generate a single call internally.

The functions unparsed-text and unparsed-text-available have the same requirement for stability as the functions doc FO and doc-
availableFO defined in [Functions and Operators]. This means that unless the user has explicitly stated a requirement for a reduced level of
stability, either of these functions if called twice with the same arguments during the course of a transformation MUST return the same results
each time; moreover, the results of a call on unparsed-text-available MUST be consistent with the results of a subsequent call on
unparsed-text with the same arguments.

16.3 Keys

Keys provide a way to work with documents that contain an implicit cross-reference structure. They make it easier to locate the nodes within
a document that have a given value for a given attribute or child element, and they provide a hint to the implementation that certain access
paths in the document need to be efficient.

16.3.1 The xsl:key Declaration

<!-- Category: declaration -->
<xsl:key
 name = qname
 match = pattern
 use? = expression
 collation? = uri>
 <!-- Content: sequence-constructor -->
</xsl:key>

The xsl:key declaration is used to declare keys. The name attribute specifies the name of the key. The value of the name attribute is a
QName, which is expanded as described in 5.1 Qualified Names. The match attribute is a Pattern; an xsl:key element applies to all nodes
that match the pattern specified in the match attribute.

[DEFINITION: A key is defined as a set of xsl:key declarations in the stylesheet that share the same name.]

The value of the key may be specified either using the use attribute or by means of the contained sequence constructor.

[ERR XTSE1205] It is a static error if an xsl:key declaration has a use attribute and has non-empty content, or if it has empty content and no
use attribute.

If the use attribute is present, its value is an expression specifying the values of the key. The expression will be evaluated with the node that
matches the pattern as the context node. The result of evaluating the expression is atomized.

Similarly, if a sequence constructor is present, it is used to determine the values of the key. The sequence constructor will be evaluated with
the node that matches the pattern as the context node. The result of evaluating the sequence constructor is atomized.

[DEFINITION: The expression in the use attribute and the sequence constructor within an xsl:key declaration are referred to collectively as
the key specifier. The key specifier determines the values that may be used to find a node using this key.]

Note:

There is no requirement that all the values of a key should have the same type.

The presence of an xsl:key declaration makes it easy to find a node that matches the match pattern if any of the values of the key specifier
(when applied to that node) are known. It also provides a hint to the implementation that access to the nodes by means of these values
needs to be efficient (many implementations are likely to construct an index or hash table to achieve this). Note that the key specifier in
general returns a sequence of values, and any one of these may be used to locate the node.

Note:

An xsl:key declaration is not bound to a specific source document. The source document to which it applies is determined only when
the key function is used to locate nodes using the key. Keys can be used to locate nodes within any source document (including
temporary trees), but each use of the key function searches one document only.

The optional collation attribute is used only when deciding whether two strings are equal for the purposes of key matching. Specifically, two
values $a and $b are considered equal if the result of the function call compare($a, $b, $collation) is zero. The effective collation for an
xsl:key declaration is the collation specified in its collation attribute if present, resolved against the base URI of the xsl:key element, or
the default collation that is in scope for the xsl:key declaration otherwise; the effective collation must be the same for all the xsl:key
declarations making up a key.

[ERR XTSE1210] It is a static error if the xsl:key declaration has a collation attribute whose value (after resolving against the base URI) is
not a URI recognized by the implementation as referring to a collation.

[ERR XTSE1220] It is a static error if there are several xsl:key declarations in the stylesheet with the same key name and different effective
collations. Two collations are the same if their URIs are equal under the rules for comparing xs:anyURI values, or if the implementation can
determine that they are different URIs referring to the same collation.

It is possible to have:

multiple xsl:key declarations with the same name;
a node that matches the match patterns of several different xsl:key declarations, whether these have the same key name or different
key names;

Page 92 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

a node that returns more than one value from its key specifier;
a key value that identifies more than one node (the key values for different nodes do not need to be unique).

An xsl:key declaration with higher import precedence does not override another of lower import precedence; all the xsl:key declarations in
the stylesheet are effective regardless of their import precedence.

16.3.2 The key Function

key($key-name as xs:string, $key-value as xs:anyAtomicType*) as node()*

The key function does for keys what the id FO function does for IDs.

The $key-name argument specifies the name of the key. The value of the argument MUST be a lexical QName, which is expanded as
described in 5.1 Qualified Names.

[ERR XTDE1260] It is a non-recoverable dynamic error if the value is not a valid QName, or if there is no namespace declaration in scope for
the prefix of the QName, or if the name obtained by expanding the QName is not the same as the expanded name of any xsl:key
declaration in the stylesheet. If the processor is able to detect the error statically (for example, when the argument is supplied as a string
literal), then the processor MAY optionally signal this as a static error.

The $key-value argument to the key function is considered as a sequence. The set of requested key values is formed by atomizing the
supplied value of the argument, using the standard function conversion rules. Each of the resulting atomic values is considered as a
requested key value. The result of the function is a sequence of nodes, in document order and with duplicates removed, comprising those
nodes in the selected subtree (see below) that are matched by an xsl:key declaration whose name is the same as the supplied key name,
where the result of evaluating the key specifier contains a value that is equal to one of these requested key values, under the rules
appropriate to the XPath eq operator for the two values in question, using the collation attributes of the xsl:key declaration when
comparing strings. No error is reported if two values are encountered that are not comparable; they are regarded for the purposes of this
function as being not equal.

Note:

Under the rules for the eq operator, untyped atomic values are converted to strings, not to the type of the other operand. This means, for
example, that if the expression in the use attribute returns a date, supplying an untyped atomic value in the call to the key function will
return an empty sequence.

If the second argument is an empty sequence, the result of the function will be an empty sequence.

Different rules apply when backwards compatible behavior is enabled. Specifically, if any of the xsl:key elements in the definition of the key
enables backwards compatible behavior, then the value of the key specifier and the value of the second argument of the key function are
both converted after atomization to a sequence of strings, by applying a cast to each item in the sequence, before performing the
comparison.

The third argument is used to identify the selected subtree. If the argument is present, the selected subtree is the set of nodes that have $top
as an ancestor-or-self node. If the argument is omitted, the selected subtree is the document containing the context node. This means that
the third argument effectively defaults to /.

[ERR XTDE1270] It is a non-recoverable dynamic error to call the key function with two arguments if there is no context node, or if the root of
the tree containing the context node is not a document node; or to call the function with three arguments if the root of the tree containing the
node supplied in the third argument is not a document node.

The result of the key function can be described more specifically as follows. The result is a sequence containing every node $N that satisfies
the following conditions:

$N/ancestor-or-self::node() intersect $top is non-empty. (If the third argument is omitted, $top defaults to /)
$N matches the pattern specified in the match attribute of an xsl:key declaration whose name attribute matches the name specified in
the $key-name argument.
When the key specifier of that xsl:key declaration is evaluated with a singleton focus based on $N, the atomized value of the resulting
sequence includes a value that compares equal to at least one item in the atomized value of the sequence supplied as $key-value,
under the rules of the eq operator with the collation selected as described above.

The sequence returned by the key function will be in document order, with duplicates (that is, nodes having the same identity) removed.

Example: Using a Key to Follow Cross-References

For example, given a declaration

<xsl:key name="idkey" match="div" use="@id"/>

an expression key("idkey",@ref) will return the same nodes as id(@ref), assuming that the only ID attribute declared in the XML
source document is:

<!ATTLIST div id ID #IMPLIED>

and that the ref attribute of the context node contains no whitespace.

Suppose a document describing a function library uses a prototype element to define functions

key($key-name as xs:string,
$key-value as xs:anyAtomicType*,
$top as node()) as node()*

Page 93 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

<prototype name="sqrt" return-type="xs:double">
 <arg type="xs:double"/>
</prototype>

and a function element to refer to function names

<function>sqrt</function>

Then the stylesheet could generate hyperlinks between the references and definitions as follows:

<xsl:key name="func" match="prototype" use="@name"/>

<xsl:template match="function">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="prototype">
 <p>

 Function:
 ...

 </p>
</xsl:template>

When called with two arguments, the key function always returns nodes that are in the same document as the context node. To retrieve a
node from any other document, it is necessary either to change the context node, or to supply a third argument.

Example: Using Keys to Reference other Documents

For example, suppose a document contains bibliographic references in the form <bibref>XSLT</bibref>, and there is a separate XML
document bib.xml containing a bibliographic database with entries in the form:

<entry name="XSLT">...</entry>

Then the stylesheet could use the following to transform the bibref elements:

<xsl:key name="bib" match="entry" use="@name"/>

<xsl:template match="bibref">
 <xsl:variable name="name" select="."/>
 <xsl:apply-templates select="document('bib.xml')/key('bib',$name)"/>
</xsl:template>

Note:

This relies on the ability in XPath 2.0 to have a function call on the right-hand side of the / operator in a path expression.

The following code would also work:

<xsl:key name="bib" match="entry" use="@name"/>

<xsl:template match="bibref">
 <xsl:apply-templates select="key('bib', ., document('bib.xml'))"/>
</xsl:template>

16.4 Number Formatting

format-number($value as numeric?, $picture as xs:string) as xs:string

The format-number function formats $value as a string using the picture string specified by the $picture argument and the decimal-format
named by the $decimal-format-name argument, or the default decimal-format, if there is no $decimal-format-name argument. The syntax of
the picture string is described in 16.4.2 Processing the Picture String.

The $value argument may be of any numeric data type (xs:double, xs:float, xs:decimal, or their subtypes including xs:integer). Note that
if an xs:decimal is supplied, it is not automatically promoted to an xs:double, as such promotion can involve a loss of precision.

If the supplied value of the $value argument is an empty sequence, the function behaves as if the supplied value were the xs:double value
NaN.

The value of $decimal-format-name MUST be a lexical QName, which is expanded as described in 5.1 Qualified Names. The result of the
function is the formatted string representation of the supplied number.

[ERR XTDE1280] It is a non-recoverable dynamic error if the name specified as the $decimal-format-name argument is not a valid QName, or if
its prefix has not been declared in an in-scope namespace declaration, or if the stylesheet does not contain a declaration of a decimal-format

format-number($value as numeric?,
$picture as xs:string,
$decimal-format-name as xs:string) as xs:string

Page 94 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

with a matching expanded-QName. If the processor is able to detect the error statically (for example, when the argument is supplied as a
string literal), then the processor MAY optionally signal this as a static error.

16.4.1 Defining a Decimal Format

<!-- Category: declaration -->
<xsl:decimal-format
 name? = qname
 decimal-separator? = char
 grouping-separator? = char
 infinity? = string
 minus-sign? = char
 NaN? = string
 percent? = char
 per-mille? = char
 zero-digit? = char
 digit? = char
 pattern-separator? = char />

The xsl:decimal-format element controls the interpretation of a picture string used by the format-number function.

A stylesheet may contain multiple xsl:decimal-format declarations and may include or import stylesheet modules that also contain
xsl:decimal-format declarations. The name of an xsl:decimal-format declaration is the value of its name attribute, if any.

[DEFINITION: All the xsl:decimal-format declarations in a stylesheet that share the same name are grouped into a named decimal format;
those that have no name are grouped into a single unnamed decimal format.]

If a stylesheet does not contain a declaration of the unnamed decimal format, a declaration equivalent to an xsl:decimal-format element
with no attributes is implied.

The attributes of the xsl:decimal-format declaration establish values for a number of variables used as input to the algorithm followed by
the format-number function. An outline of the purpose of each attribute is given below; however, the definitive explanations are given later,
as part of the description of this algorithm.

For any named decimal format, the effective value of each attribute is taken from an xsl:decimal-format declaration that has that name,
and that specifies an explicit value for the required attribute. If there is no such declaration, the default value of the attribute is used. If there
is more than one such declaration, the one with highest import precedence is used.

For any unnamed decimal format, the effective value of each attribute is taken from an xsl:decimal-format declaration that is unnamed, and
that specifies an explicit value for the required attribute. If there is no such declaration, the default value of the attribute is used. If there is
more than one such declaration, the one with highest import precedence is used.

[ERR XTSE1290] It is a static error if a named or unnamed decimal format contains two conflicting values for the same attribute in different
xsl:decimal-format declarations having the same import precedence, unless there is another definition of the same attribute with higher
import precedence.

The following attributes control the interpretation of characters in the picture string supplied to the format-number function, and also specify
characters that may appear in the result of formatting the number. In each case the value MUST be a single character [see ERR XTSE0020].

decimal-separator specifies the character used for the decimal-separator-sign; the default value is the period character (.)
grouping-separator specifies the character used for the grouping-sign, which is typically used as a thousands separator; the default
value is the comma character (,)
percent specifies the character used for the percent-sign; the default value is the percent character (%)
per-mille specifies the character used for the per-mille-sign; the default value is the Unicode per-mille character (#x2030)
zero-digit specifies the character used for the digit-zero-sign; the default value is the digit zero (0). This character MUST be a digit
(category Nd in the Unicode property database), and it MUST have the numeric value zero. This attribute implicitly defines the Unicode
character that is used to represent each of the values 0 to 9 in the final result string: Unicode is organized so that each set of decimal
digits forms a contiguous block of characters in numerical sequence.

[ERR XTSE1295] It is a static error if the character specified in the zero-digit attribute is not a digit or is a digit that does not have the numeric
value zero.

The following attributes control the interpretation of characters in the picture string supplied to the format-number function. In each case the
value MUST be a single character [see ERR XTSE0020].

digit specifies the character used for the digit-sign in the picture string; the default value is the number sign character (#)
pattern-separator specifies the character used for the pattern-separator-sign, which separates positive and negative sub-pictures in a
picture string; the default value is the semi-colon character (;)

The following attributes specify characters or strings that may appear in the result of formatting the number:

infinity specifies the string used for the infinity-symbol; the default value is the string Infinity
NaN specifies the string used for the NaN-symbol, which is used to represent the value NaN (not-a-number); the default value is the
string NaN
minus-sign specifies the character used for the minus-symbol; the default value is the hyphen-minus character (-, #x2D). The value
MUST be a single character.

[ERR XTSE1300] It is a static error if, for any named or unnamed decimal format, the variables representing characters used in a picture string
do not each have distinct values. These variables are decimal-separator-sign, grouping-sign, percent-sign, per-mille-sign, digit-zero-sign,
digit-sign, and pattern-separator-sign.

16.4.2 Processing the Picture String

[DEFINITION: The formatting of a number is controlled by a picture string. The picture string is a sequence of characters, in which the
characters assigned to the variables decimal-separator-sign, grouping-sign, zero-digit-sign, digit-sign and pattern-separator-sign are

Page 95 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

classified as active characters, and all other characters (including the percent-sign and per-mille-sign) are classified as passive characters.]

The integer part of the sub-picture is defined as the part that appears to the left of the decimal-separator-sign if there is one, or the entire
sub-picture otherwise. The fractional part of the sub-picture is defined as the part that appears to the right of the decimal-separator-sign if
there is one; it is a zero-length string otherwise.

[ERR XTDE1310] The picture string MUST conform to the following rules. It is a non-recoverable dynamic error if the picture string does not
satisfy these rules.

Note that in these rules the words "preceded" and "followed" refer to characters anywhere in the string, they are not to be read as
"immediately preceded" and "immediately followed".

A picture-string consists either of a sub-picture, or of two sub-pictures separated by a pattern-separator-sign. A picture-string MUST NOT
contain more than one pattern-separator-sign. If the picture-string contains two sub-pictures, the first is used for positive values and the
second for negative values.
A sub-picture MUST NOT contain more than one decimal-separator-sign.
A sub-picture MUST NOT contain more than one percent-sign or per-mille-sign, and it MUST NOT contain one of each.
A sub-picture MUST contain at least one digit-sign or zero-digit-sign.
A sub-picture MUST NOT contain a passive character that is preceded by an active character and that is followed by another active
character.
A sub-picture MUST NOT contain a grouping-separator-sign adjacent to a decimal-separator-sign.
The integer part of a sub-picture MUST NOT contain a zero-digit-sign that is followed by a digit-sign. The fractional part of a sub-picture
MUST NOT contain a digit-sign that is followed by a zero-digit-sign.

The evaluation of the format-number function is described below in two phases, an analysis phase and a formatting phase. The analysis
phase takes as its inputs the picture string and the variables derived from the relevant xsl:decimal-format declaration, and produces as its
output a number of variables with defined values. The formatting phase takes as its inputs the number to be formatted and the variables
produced by the analysis phase, and produces as its output a string containing a formatted representation of the number.

Note:

Numbers will always be formatted with the most significant digit on the left.

16.4.3 Analysing the Picture String

This phase of the algorithm analyses the picture string and the attribute settings of the xsl:decimal-format declaration, and has the effect of
setting the values of various variables, which are used in the subsequent formatting phase. These variables are listed below. Each is shown
with its initial setting and its data type.

Several variables are associated with each sub-picture. If there are two sub-pictures, then these rules are applied to one sub-picture to
obtain the values that apply to positive numbers, and to the other to obtain the values that apply to negative numbers. If there is only one
sub-picture, then the values for both cases are derived from this sub-picture.

The variables are as follows:

The integer-part-grouping-positions is a sequence of integers representing the positions of grouping separators within the integer part
of the sub-picture. For each grouping-separator-sign that appears within the integer part of the sub-picture, this sequence contains an
integer that is equal to the total number of digit-sign and zero-digit-sign characters that appear within the integer part of the sub-picture
and to the right of the grouping-separator-sign. In addition, if these integer-part-grouping-positions are at regular intervals (that is, if
they form a sequence N, 2N, 3N, ... for some integer value N, including the case where there is only one number in the list), then the
sequence contains all integer multiples of N as far as necessary to accommodate the largest possible number.
The minimum-integer-part-size is an integer indicating the minimum number of digits that will appear to the left of the decimal-
separator-sign. It is normally set to the number of zero-digit-sign characters found in the integer part of the sub-picture. But if the sub-
picture contains no zero-digit-sign and no decimal-separator-sign, it is set to one.

Note:
There is no maximum integer part size. All significant digits in the integer part of the number will be displayed, even if this exceeds
the number of digit-sign and zero-digit-sign characters in the subpicture.

The prefix is set to contain all passive characters in the sub-picture to the left of the leftmost active character. If the picture string
contains only one sub-picture, the prefix for the negative sub-picture is set by concatenating the minus-sign character and the prefix for
the positive sub-picture (if any), in that order.
The fractional-part-grouping-positions is a sequence of integers representing the positions of grouping separators within the fractional
part of the sub-picture. For each grouping-separator-sign that appears within the fractional part of the sub-picture, this sequence
contains an integer that is equal to the total number of digit-sign and zero-digit-sign characters that appear within the fractional part of
the sub-picture and to the left of the grouping-separator-sign.
The minimum-fractional-part-size is set to the number of zero-digit-sign characters found in the fractional part of the sub-picture.
The maximum-fractional-part-size is set to the total number of digit-sign and zero-digit-sign characters found in the fractional part of the
sub-picture.
The suffix is set to contain all passive characters to the right of the rightmost active character in the fractional part of the sub-picture.

Note:

If there is only one sub-picture, then all variables for positive numbers and negative numbers will be the same, except for prefix: the
prefix for negative numbers will be preceded by the minus-sign character.

16.4.4 Formatting the Number

This section describes the second phase of processing of the format-number function. This phase takes as input a number to be formatted
(referred to as the input number), and the variables set up by analysing the xsl:decimal-format declaration and the picture string, as
described above. The result of this phase is a string, which forms the return value of the format-number function.

The algorithm for this second stage of processing is as follows:

Page 96 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

1. If the input number is NaN (not a number), the result is the specified NaN-symbol (with no prefix or suffix).
2. In the rules below, the positive sub-picture and its associated variables are used if the input number is positive, and the negative sub-

picture and its associated variables are used otherwise. Negative zero is taken as negative, positive zero as positive.
3. If the input number is positive or negative infinity, the result is the concatenation of the appropriate prefix, the infinity-symbol, and the

appropriate suffix.
4. If the sub-picture contains a percent-sign, the number is multiplied by 100. If the sub-picture contains a per-mille-sign, the number is

multiplied by 1000. The resulting number is referred to below as the adjusted number.
5. The adjusted number is converted (if necessary) to an xs:decimal value, using an implementation of xs:decimal that imposes no limits

on the totalDigits or fractionDigits facets. If there are several such values that are numerically equal to the adjusted number
(bearing in mind that if the adjusted number is an xs:double or xs:float, the comparison will be done by converting the decimal value
back to an xs:double or xs:float), the one that is chosen SHOULD be one with the smallest possible number of digits not counting
leading or trailing zeroes (whether significant or insignificant). For example, 1.0 is preferred to 0.9999999999, and 100000000 is
preferred to 100000001. This value is then rounded so that it uses no more than maximum-fractional-part-size digits in its fractional
part. The rounded number is defined to be the result of converting the adjusted number to an xs:decimal value, as described above,
and then calling the function round-half-to-evenFO with this converted number as the first argument and the maximum-fractional-
part-size as the second argument, again with no limits on the totalDigits or fractionDigits in the result.

6. The absolute value of the rounded number is converted to a string in decimal notation, with no insignificant leading or trailing zeroes,
using the characters implied by the choice of zero-digit-sign to represent the ten decimal digits, and the decimal-separator-sign to
separate the integer part and the fractional part. (The value zero will at this stage be represented by a decimal-separator-sign on its
own.)

7. If the number of digits to the left of the decimal-separator-sign is less than minimum-integer-part-size, leading zero-digit-sign characters
are added to pad out to that size.

8. If the number of digits to the right of the decimal-separator-sign is less than minimum-fractional-part-size, trailing zero-digit-sign
characters are added to pad out to that size.

9. For each integer N in the integer-part-grouping-positions list, a grouping-separator-sign character is inserted into the string immediately
after that digit that appears in the integer part of the number and has N digits between it and the decimal-separator-sign, if there is
such a digit.

10. For each integer N in the fractional-part-grouping-positions list, a grouping-separator-sign character is inserted into the string
immediately before that digit that appears in the fractional part of the number and has N digits between it and the decimal-separator-
sign, if there is such a digit.

11. If there is no decimal-separator-sign in the sub-picture, or if there are no digits to the right of the decimal-separator-sign character in
the string, then the decimal-separator-sign character is removed from the string (it will be the rightmost character in the string).

12. The result of the function is the concatenation of the appropriate prefix, the string conversion of the number as obtained above, and the
appropriate suffix.

16.5 Formatting Dates and Times

Three functions are provided to represent dates and times as a string, using the conventions of a selected calendar, language, and country.
Each has two variants.

format-dateTime($value as xs:dateTime?, $picture as xs:string) as xs:string?

format-date($value as xs:date?, $picture as xs:string) as xs:string?

format-time($value as xs:time?, $picture as xs:string) as xs:string?

The format-dateTime, format-date, and format-time functions format $value as a string using the picture string specified by the $picture
argument, the calendar specified by the $calendar argument, the language specified by the $language argument, and the country specified
by the $country argument. The result of the function is the formatted string representation of the supplied dateTime, date, or time value.

[DEFINITION: The three functions format-date, format-time, and format-dateTime are referred to collectively as the date formatting
functions.]

If $value is the empty sequence, the empty sequence is returned.

Calling the two-argument form of each of the three functions is equivalent to calling the five-argument form with each of the last three
arguments set to an empty sequence.

For details of the language, calendar, and country arguments, see 16.5.2 The Language, Calendar, and Country Arguments.

In general, the use of an invalid picture, language, calendar, or country argument is classified as a non-recoverable dynamic error. By
contrast, use of an option in any of these arguments that is valid but not supported by the implementation is not an error, and in these cases
the implementation is required to output the value in a fallback representation.

16.5.1 The Picture String

The picture consists of a sequence of variable markers and literal substrings. A substring enclosed in square brackets is interpreted as a

format-dateTime($value as xs:dateTime?,
$picture as xs:string,
$language as xs:string?,
$calendar as xs:string?,
$country as xs:string?) as xs:string?

format-date($value as xs:date?,
$picture as xs:string,
$language as xs:string?,
$calendar as xs:string?,
$country as xs:string?) as xs:string?

format-time($value as xs:time?,
$picture as xs:string,
$language as xs:string?,
$calendar as xs:string?,
$country as xs:string?) as xs:string?

Page 97 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

variable marker; substrings not enclosed in square brackets are taken as literal substrings. The literal substrings are optional and if present
are rendered unchanged, including any whitespace. If an opening or closing square bracket is required within a literal substring, it MUST be
doubled. The variable markers are replaced in the result by strings representing aspects of the date and/or time to be formatted. These are
described in detail below.

A variable marker consists of a component specifier followed optionally by one or two presentation modifiers and/or optionally by a width
modifier. Whitespace within a variable marker is ignored.

The component specifier indicates the component of the date or time that is required, and takes the following values:

[ERR XTDE1340] It is a non-recoverable dynamic error if the syntax of the picture is incorrect.

[ERR XTDE1350] It is a non-recoverable dynamic error if a component specifier within the picture refers to components that are not available in
the given type of $value, for example if the picture supplied to the format-time refers to the year, month, or day component.

It is not an error to include a timezone component when the supplied value has no timezone. In these circumstances the timezone
component will be ignored.

The first presentation modifier indicates the style in which the value of a component is to be represented. Its value may be either:

any format token permitted in the format string of the xsl:number instruction (see 12 Numbering), indicating that the value of the
component is to be output numerically using the specified number format (for example, 1, 01, i, I, w, W, or Ww) or
the format token n, N, or Nn, indicating that the value of the component is to be output by name, in lower-case, upper-case, or title-case
respectively. Components that can be output by name include (but are not limited to) months, days of the week, timezones, and eras. If
the processor cannot output these components by name for the chosen calendar and language then it must use an implementation-
defined fallback representation.

If the implementation does not support the use of the requested format token, it MUST use the default presentation modifier for that
component.

If the first presentation modifier is present, then it may optionally be followed by a second presentation modifier as follows:

Note:

Although the formatting rules are expressed in terms of the rules for format tokens in xsl:number, the formats actually used may be
specialized to the numbering of date components where appropriate. For example, in Italian, it is conventional to use an ordinal number
(primo) for the first day of the month, and cardinal numbers (due, tre, quattro ...) for the remaining days. A processor may therefore
use this convention to number days of the month, ignoring the presence or absence of the ordinal presentation modifier.

Whether or not a presentation modifier is included, a width modifier may be supplied. This indicates the number of characters or digits to be
included in the representation of the value.

The width modifier, if present, is introduced by a comma. It takes the form:

Specifier Meaning Default Presentation
Modifier

Y year (absolute value) 1

M month in year 1

D day in month 1

d day in year 1

F day of week n

W week in year 1

w week in month 1

H hour in day (24 hours) 1

h hour in half-day (12 hours) 1

P am/pm marker n

m minute in hour 01

s second in minute 01

f fractional seconds 1

Z timezone as a time offset from UTC, or if an alphabetic modifier is present the conventional name
of a timezone (such as PST)

1

z timezone as a time offset using GMT, for example GMT+1 1

C calendar: the name or abbreviation of a calendar name n

E era: the name of a baseline for the numbering of years, for example the reign of a monarch n

Modifier Meaning

t traditional numbering. This has the same meaning as letter-value="traditional" in xsl:number.

o ordinal form of a number, for example 8th or 8º. The actual representation of the ordinal form of a number may depend not only
on the language, but also on the grammatical context (for example, in some languages it must agree in gender).

Page 98 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 , min-width ("-" max-width)?

where min-width is either an unsigned integer indicating the minimum number of characters to be output, or * indicating that there is no
explicit minimum, and max-width is either an unsigned integer indicating the maximum number of characters to be output, or * indicating that
there is no explicit maximum; if max-width is omitted then * is assumed. Both integers, if present, MUST be greater than zero.

A format token containing leading zeroes, such as 001, sets the minimum and maximum width to the number of digits appearing in the format
token; if a width modifier is also present, then the width modifier takes precedence.

Note:

A format token consisting of a one-digit on its own, such as 1, does not constrain the number of digits in the output. In the case of
fractional seconds in particular, [f001] requests three decimal digits, [f01] requests two digits, but [f1] will produce an
implementation-defined number of digits. If exactly one digit is required, this can be achieved using the component specifier [f1,1-1].

If the minumum and maximum width are unspecified, then the output uses as many characters as are required to represent the value of the
component without truncation and without padding: this is referred to below as the full representation of the value.

If the full representation of the value exceeds the specified maximum width, then the processor SHOULD attempt to use an alternative shorter
representation that fits within the maximum width. Where the presentation modifier is N, n, or Nn, this is done by abbreviating the name, using
either conventional abbreviations if available, or crude right-truncation if not. For example, setting max-width to 4 indicates that four-letter
abbreviations SHOULD be used, though it would be acceptable to use a three-letter abbreviation if this is in conventional use. (For example,
"Tuesday" might be abbreviated to "Tues", and "Friday" to "Fri".) In the case of the year component, setting max-width requests omission of
high-order digits from the year, for example, if max-width is set to 2 then the year 2003 will be output as 03. In the case of the fractional
seconds component, the value is rounded to the specified size as if by applying the function round-half-to-even(fractional-seconds,
max-width). If no mechanism is available for fitting the value within the specified maximum width (for example, when roman numerals are
used), then the value SHOULD be output in its full representation.

If the full representation of the value is shorter than the specified minimum width, then the processor SHOULD pad the value to the specified
width. For decimal representations of numbers, this SHOULD be done by prepending zero digits from the appropriate set of digit characters,
or appending zero digits in the case of the fractional seconds component. In other cases, it SHOULD be done by appending spaces.

16.5.2 The Language, Calendar, and Country Arguments

The set of languages, calendars, and countries that are supported in the date formatting functions is implementation-defined. When any of
these arguments is omitted or is an empty sequence, an implementation-defined default value is used.

If the fallback representation uses a different calendar from that requested, the output string MUST be prefixed with [Calendar: X] where X
identifies the calendar actually used. The string Calendar SHOULD be localized using the requested language if available. If the fallback
representation uses a different language from that requested, the output string should be prefixed with [Language: Y] where Y identifies the
language actually used. The string Language MAY be localized in an implementation-dependent way. If a particular component of the value
cannot be output in the requested format, it SHOULD be output in the default format for that component.

The language argument specifies the language to be used for the result string of the function. The value of the argument MUST be either the
empty sequence or a value that would be valid for the xml:lang attribute (see [XML]). Note that this permits the identification of
sublanguages based on country codes (from [ISO 3166-1]) as well as identification of dialects and of regions within a country.

If the language argument is omitted or is set to an empty sequence, or if it is set to an invalid value or a value that the implementation does
not recognize, then the processor uses an implementation-defined language.

The language is used to select the appropriate language-dependent forms of:

names (for example, of months)
numbers expressed as words or as ordinals (twenty, 20th, twentieth)
hour convention (0-23 vs 1-24, 0-11 vs 1-12)
first day of week, first week of year

Where appropriate this choice may also take into account the value of the country argument, though this SHOULD not be used to override the
language or any sublanguage that is specified as part of the language argument.

The choice of the names and abbreviations used in any given language is implementation-defined. For example, one implementation might
abbreviate July as Jul while another uses Jly. In German, one implementation might represent Saturday as Samstag while another uses
Sonnabend. Implementations MAY provide mechanisms allowing users to control such choices.

Where ordinal numbers are used, the selection of the correct representation of the ordinal (for example, the linguistic gender) MAY depend
on the component being formatted and on its textual context in the picture string.

The calendar attribute specifies that the dateTime, date, or time supplied in the $value argument MUST be converted to a value in the
specified calendar and then converted to a string using the conventions of that calendar.

A calendar value MUST be a valid QName. If the QName does not have a prefix, then it identifies a calendar with the designator specified
below. If the QName has a prefix, then the QName is expanded into an expanded-QName as described in 5.1 Qualified Names; the
expanded-QName identifies the calendar; the behavior in this case is implementation-defined.

If the calendar attribute is omitted an implementation-defined value is used.

Note:

The calendars listed below were known to be in use during the last hundred years. Many other calendars have been used in the past.

This specification does not define any of these calendars, nor the way that they map to the value space of the xs:date data type in [XML
Schema Part 2]. There may be ambiguities when dates are recorded using different calendars. For example, the start of a new day is
not simultaneous in different calendars, and may also vary geographically (for example, based on the time of sunrise or sunset).
Translation of dates is therefore more reliable when the time of day is also known, and when the geographic location is known. When
translating dates between one calendar and another, the processor may take account of the values of the country and/or language

Page 99 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

arguments, with the country argument taking precedence.

Information about some of these calendars, and algorithms for converting between them, may be found in [Calendrical Calculations].

At least one of the above calendars MUST be supported. It is implementation-defined which calendars are supported.

The ISO 8601 calendar ([ISO 8601]), which is included in the above list and designated ISO, is very similar to the Gregorian calendar
designated AD, but it differs in several ways. The ISO calendar is intended to ensure that date and time formats can be read easily by other
software, as well as being legible for human users. The ISO calendar prescribes the use of particular numbering conventions as defined in
ISO 8601, rather than allowing these to be localized on a per-language basis. In particular it provides a numeric 'week date' format which
identifies dates by year, week of the year, and day in the week; in the ISO calendar the days of the week are numbered from 1 (Monday) to 7
(Sunday), and week 1 in any calendar year is the week (from Monday to Sunday) that includes the first Thursday of that year. The numeric
values of the components year, month, day, hour, minute, and second are the same in the ISO calendar as the values used in the lexical
representation of the date and time as defined in [XML Schema Part 2]. The era ("E" component) with this calendar is either a minus sign
(for negative years) or a zero-length string (for positive years). For dates before 1 January, AD 1, year numbers in the ISO and AD calendars
are off by one from each other: ISO year 0000 is 1 BC, -0001 is 2 BC, etc.

Note:

The value space of the date and time data types, as defined in XML Schema, is based on absolute points in time. The lexical space of
these data types defines a representation of these absolute points in time using the proleptic Gregorian calendar, that is, the modern
Western calendar extrapolated into the past and the future; but the value space is calendar-neutral. The date formatting functions
produce a representation of this absolute point in time, but denoted in a possibly different calendar. So, for example, the date whose
lexical representation in XML Schema is 1502-01-11 (the day on which Pope Gregory XIII was born) might be formatted using the Old
Style (Julian) calendar as 1 January 1502. This reflects the fact that there was at that time a ten-day difference between the two
calendars. It would be incorrect, and would produce incorrect results, to represent this date in an element or attribute of type xs:date as
1502-01-01, even though this might reflect the way the date was recorded in contemporary documents.

When referring to years occurring in antiquity, modern historians generally use a numbering system in which there is no year zero (the
year before 1 CE is thus 1 BCE). This is the convention that SHOULD be used when the requested calendar is OS (Julian) or AD
(Gregorian). When the requested calendar is ISO, however, the conventions of ISO 8601 SHOULD be followed: here the year before
+0001 is numbered zero. In [XML Schema Part 2] (version 1.0), the value space for xs:date and xs:dateTime does not include a year
zero: however, a future edition is expected to endorse the ISO 8601 convention. This means that the date on which Julius Caesar was

Designator Calendar

AD Anno Domini (Christian Era)

AH Anno Hegirae (Muhammedan Era)

AME Mauludi Era (solar years since Mohammed's birth)

AM Anno Mundi (Jewish Calendar)

AP Anno Persici

AS Aji Saka Era (Java)

BE Buddhist Era

CB Cooch Behar Era

CE Common Era

CL Chinese Lunar Era

CS Chula Sakarat Era

EE Ethiopian Era

FE Fasli Era

ISO ISO 8601 calendar

JE Japanese Calendar

KE Khalsa Era (Sikh calendar)

KY Kali Yuga

ME Malabar Era

MS Monarchic Solar Era

NS Nepal Samwat Era

OS Old Style (Julian Calendar)

RS Rattanakosin (Bangkok) Era

SE Saka Era

SH Mohammedan Solar Era (Iran)

SS Saka Samvat

TE Tripurabda Era

VE Vikrama Era

VS Vikrama Samvat Era

Page 100 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

assassinated has the ISO 8601 lexical representation -0043-03-13, but will be formatted as 15 March 44 BCE in the Julian calendar or
13 March 44 BCE in the Gregorian calendar (dependant on the chosen localization of the names of months and eras).

The intended use of the country argument is to identify the place where an event represented by the dateTime, date, or time supplied in the
$value argument took place or will take place. If the value is supplied, and is not the empty sequence, then it SHOULD be a country code
defined in [ISO 3166-1]. Implementations MAY also allow the use of codes representing subdivisions of a country from ISO 3166-2, or codes
representing formerly used names of countries from ISO 3166-3. This argument is not intended to identify the location of the user for whom
the date or time is being formatted; that should be done by means of the language attribute. This information MAY be used to provide
additional information when converting dates between calendars or when deciding how individual components of the date and time are to be
formatted. For example, different countries using the Old Style (Julian) calendar started the new year on different days, and some countries
used variants of the calendar that were out of synchronization as a result of differences in calculating leap years. The geographical area
identified by a country code is defined by the boundaries as they existed at the time of the date to be formatted, or the present-day
boundaries for dates in the future.

16.5.3 Examples of Date and Time Formatting

Example: Gregorian Calendar

The following examples show a selection of dates and times and the way they might be formatted. These examples assume the use of
the Gregorian calendar as the default calendar.

Example: Non-Gregorian Calendars

The following examples use calendars other than the Gregorian calendar.

These examples use non-Latin characters which might not display correctly in all browsers, depending on the system configuration.

Required Output Expression

2002-12-31 format-date($d, "[Y0001]-[M01]-[D01]")

12-31-2002 format-date($d, "[M]-[D]-[Y]")

31-12-2002 format-date($d, "[D]-[M]-[Y]")

31 XII 2002 format-date($d, "[D1] [MI] [Y]")

31st December, 2002 format-date($d, "[D1o] [MNn], [Y]", "en", (), ())

31 DEC 2002 format-date($d, "[D01] [MN,*-3] [Y0001]", "en", (), ())

December 31, 2002 format-date($d, "[MNn] [D], [Y]", "en", (), ())

31 Dezember, 2002 format-date($d, "[D] [MNn], [Y]", "de", (), ())

Tisdag 31 December 2002 format-date($d, "[FNn] [D] [MNn] [Y]", "sv", (), ())

[2002-12-31] format-date($d, "[[[Y0001]-[M01]-[D01]]]")

Two Thousand and Three format-date($d, "[YWw]", "en", (), ())

einunddreißigste Dezember format-date($d, "[Dwo] [MNn]", "de", (), ())

3:58 PM format-time($t, "[h]:[m01] [PN]", "en", (), ())

3:58:45 pm format-time($t, "[h]:[m01]:[s01] [Pn]", "en", (), ())

3:58:45 PM PDT format-time($t, "[h]:[m01]:[s01] [PN] [ZN,*-3]", "en", (), ())

3:58:45 o'clock PM PDT format-time($t, "[h]:[m01]:[s01] o'clock [PN] [ZN,*-3]", "en")

15:58 format-time($t,"[H01]:[m01]")

15:58:45.762 format-time($t,"[H01]:[m01]:[s01].[f001]")

15:58:45 GMT+02:00 format-time($t,"[H01]:[m01]:[s01] [z]", "en", (), ())

15.58 Uhr GMT+02:00 format-time($t,"[H01]:[m01] Uhr [z]", "de", (), ())

3.58pm on Tuesday, 31st December format-dateTime($dt, "[h].[m01][Pn] on [FNn], [D1o] [MNn]")

12/31/2002 at 15:58:45 format-dateTime($dt, "[M01]/[D01]/[Y0001] at [H01]:[m01]:[s01]")

Page 101 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

16.6 Miscellaneous Additional Functions

16.6.1 current

current() as item()

The current function, used within an XPath expression, returns the item that was the context item at the point where the expression was
invoked from the XSLT stylesheet. This is referred to as the current item. For an outermost expression (an expression not occurring within
another expression), the current item is always the same as the context item. Thus,

<xsl:value-of select="current()"/>

means the same as

<xsl:value-of select="."/>

However, within square brackets, or on the right-hand side of the / operator, the current item is generally different from the context item.

Example: Using the current Function

For example,

<xsl:apply-templates select="//glossary/entry[@name=current()/@ref]"/>

will process all entry elements that have a glossary parent element and that have a name attribute with value equal to the value of the
current item's ref attribute. This is different from

<xsl:apply-templates select="//glossary/entry[@name=./@ref]"/>

which means the same as

<xsl:apply-templates select="//glossary/entry[@name=@ref]"/>

and so would process all entry elements that have a glossary parent element and that have a name attribute and a ref attribute with the
same value.

If the current function is used within a pattern, its value is the node that is being matched against the pattern.

[ERR XTDE1360] If the current function is evaluated within an expression that is evaluated when the context item is undefined, a non-
recoverable dynamic error occurs.

16.6.2 unparsed-entity-uri

unparsed-entity-uri($entity-name as xs:string) as xs:anyURI

The unparsed-entity-uri function returns the URI of the unparsed entity whose name is given by the value of the $entity-name argument, in
the document containing the context node. It returns the zero-length xs:anyURI if there is no such entity. This function maps to the
dm:unparsed-entity-system-id accessor defined in [Data Model].

[ERR XTDE1370] It is a non-recoverable dynamic error if the unparsed-entity-uri function is called when there is no context node, or when the
root of the tree containing the context node is not a document node.

16.6.3 unparsed-entity-public-id

unparsed-entity-public-id($entity-name as xs:string) as xs:string

The unparsed-entity-public-id function returns the public identifier of the unparsed entity whose name is given by the value of the
$entity-name argument, in the document containing the context node. It returns the zero-length string if there is no such entity, or if the entity
has no public identifier. This function maps to the dm:unparsed-entity-public-id accessor defined in [Data Model].

Description Request Result

Islamic format-date($d, "[D١] [Mn] [Y١]", "Islamic", "ar",
"AH", ())

١٤٢٣ شوّال٢٦

Jewish (with Western
numbering)

format-date($d, "[D] [Mn] [Y]", "he", "AM", ()) 5763טבת 26

Jewish (with traditional
numbering)

format-date($d, "[Dאt] [Mn] [Yאt]", "he", "AM", ()) כ״ו טבת תשס״ג

Julian (Old Style) format-date($d, "[D] [MNn] [Y]", "en", "OS", ()) 18 December
2002

Thai format-date($d, "[D๑] [Mn] [Y๑]", "th", "BE", ()) ๓๑ ธันวาคม ๒๕๔๕

Page 102 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

[ERR XTDE1380] It is a non-recoverable dynamic error if the unparsed-entity-public-id function is called when there is no context node, or
when the root of the tree containing the context node is not a document node.

16.6.4 generate-id

generate-id() as xs:string
generate-id($node as node()?) as xs:string

The generate-id function returns a string that uniquely identifies a given node. The unique identifier MUST consist of ASCII alphanumeric
characters and MUST start with an alphabetic character. Thus, the string is syntactically an XML name. An implementation is free to generate
an identifier in any convenient way provided that it always generates the same identifier for the same node and that different identifiers are
always generated from different nodes. An implementation is under no obligation to generate the same identifiers each time a document is
transformed. There is no guarantee that a generated unique identifier will be distinct from any unique IDs specified in the source document.
If the argument is the empty sequence, the result is the zero-length string. If the argument is omitted, it defaults to the context node.

16.6.5 system-property

system-property($property-name as xs:string) as xs:string

The $property-name argument MUST evaluate to a lexical QName. The lexical QName is expanded as described in 5.1 Qualified Names.

[ERR XTDE1390] It is a non-recoverable dynamic error if the value is not a valid QName, or if there is no namespace declaration in scope for
the prefix of the QName. If the processor is able to detect the error statically (for example, when the argument is supplied as a string literal),
then the processor MAY optionally signal this as a static error.

The system-property function returns a string representing the value of the system property identified by the name. If there is no such
system property, the zero-length string is returned.

Implementations MUST provide the following system properties, which are all in the XSLT namespace:

xsl:version, a number giving the version of XSLT implemented by the processor; for implementations conforming to the version of
XSLT specified by this document, this is the string "2.0". The value will always be a string in the lexical space of the decimal data type
defined in XML Schema (see [XML Schema Part 2]). This allows the value to be converted to a number for the purpose of magnitude
comparisons.
xsl:vendor, a string identifying the implementer of the processor
xsl:vendor-url, a string containing a URL identifying the implementer of the processor; typically this is the host page (home page) of
the implementer's Web site.
xsl:product-name, a string containing the name of the implementation, as defined by the implementer. This SHOULD normally remain
constant from one release of the product to the next. It SHOULD also be constant across platforms in cases where the same source
code is used to produce compatible products for multiple execution platforms.
xsl:product-version, a string identifying the version of the implementation, as defined by the implementer. This SHOULD normally vary
from one release of the product to the next, and at the discretion of the implementer it MAY also vary across different execution
platforms.
xsl:is-schema-aware, returns the string "yes" in the case of a processor that claims conformance as a schema-aware XSLT
processor, or "no" in the case of a basic XSLT processor.
xsl:supports-serialization, returns the string "yes" in the case of a processor that offers the serialization feature, or "no" otherwise.
xsl:supports-backwards-compatibility, returns the string "yes" in the case of a processor that offers the backwards compatibility
feature, or "no" otherwise.

Some of these properties relate to the conformance levels and features offered by the processor: these options are described in 21
Conformance.

The actual values returned for the above properties are implementation-defined.

The set of system properties that are supported, in addition to those listed above, is also implementation-defined. Implementations MUST NOT
define additional system properties in the XSLT namespace.

Note:

An implementation must not return the value 2.0 as the value of the xsl:version system property unless it is conformant to XSLT 2.0.

It is recognized that vendors who are enhancing XSLT 1.0 processors may wish to release interim implementations before all the
mandatory features of this specification are implemented. Since such products are not conformant to XSLT 2.0, this specification cannot
define their behavior. However, implementers of such products are encouraged to return a value for the xsl:version system property
that is intermediate between 1.0 and 2.0, and to provide the element-available and function-available functions to allow users to test
which features have been fully implemented.

17 Messages
<!-- Category: instruction -->
<xsl:message
 select? = expression
 terminate? = { "yes" | "no" }>
 <!-- Content: sequence-constructor -->
</xsl:message>

The xsl:message instruction sends a message in an implementation-defined way. The xsl:message instruction causes the creation of a new
document, which is typically serialized and output to an implementation-defined destination. The result of the xsl:message instruction is an
empty sequence.

The content of the message may be specified by using either or both of the optional select attribute and the sequence constructor that
forms the content of the xsl:message instruction.

Page 103 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

If the xsl:message instruction contains a sequence constructor, then the sequence obtained by evaluating this sequence constructor is used
to construct the content of the new document node, as described in 5.7.1 Constructing Complex Content.

If the xsl:message instruction has a select attribute, then the value of the attribute MUST be an XPath expression. The effect of the
xsl:message instruction is then the same as if a single xsl:copy-of instruction with this select attribute were added to the start of the
sequence constructor.

If the xsl:message instruction has no content and no select attribute, then an empty message is produced.

The tree produced by the xsl:message instruction is not technically a final result tree. The tree has no URI and processors are not REQUIRED
to make the tree accessible to applications.

Note:

In many cases, the XML document produced using xsl:message will consist of a document node owning a single text node. However, it
may contain a more complex structure.

Note:

An implementation might implement xsl:message by popping up an alert box or by writing to a log file. Because the order of execution of
instructions is implementation-defined, the order in which such messages appear is not predictable.

The terminate attribute is interpreted as an attribute value template.

If the effective value of the terminate attribute is yes, then the processor MUST terminate processing after sending the message. The default
value is no. Note that because the order of evaluation of instructions is implementation-dependent, this gives no guarantee that any
particular instruction will or will not be evaluated before processing terminates.

[ERR XTMM9000] When a transformation is terminated by use of xsl:message terminate="yes", the effect is the same as when a non-
recoverable dynamic error occurs during the transformation.

Example: Localizing Messages

One convenient way to do localization is to put the localized information (message text, etc.) in an XML document, which becomes an
additional input file to the stylesheet. For example, suppose messages for a language L are stored in an XML file resources/L.xml in
the form:

<messages>
 <message name="problem">A problem was detected.</message>
 <message name="error">An error was detected.</message>
</messages>

Then a stylesheet could use the following approach to localize messages:

<xsl:param name="lang" select="'en'"/>
<xsl:variable name="messages"
 select="document(concat('resources/', $lang, '.xml'))/messages"/>

<xsl:template name="localized-message">
 <xsl:param name="name"/>
 <xsl:message select="string($messages/message[@name=$name])"/>
</xsl:template>

<xsl:template name="problem">
 <xsl:call-template name="localized-message">
 <xsl:with-param name="name">problem</xsl:with-param>
 </xsl:call-template>
</xsl:template>

18 Extensibility and Fallback

XSLT allows two kinds of extension, extension instructions and extension functions.

[DEFINITION: An extension instruction is an element within a sequence constructor that is in a namespace (not the XSLT namespace)
designated as an extension namespace.]

[DEFINITION: An extension function is a function that is available for use within an XPath expression, other than a core function defined in
[Functions and Operators], an additional function defined in this XSLT specification, a constructor function named after an atomic type, or a
stylesheet function defined using an xsl:function declaration.].

This specification does not define any mechanism for creating or binding implementations of extension instructions or extension functions,
and it is not REQUIRED that implementations support any such mechanism. Such mechanisms, if they exist, are implementation-defined.
Therefore, an XSLT stylesheet that MUST be portable between XSLT implementations cannot rely on particular extensions being available.
XSLT provides mechanisms that allow an XSLT stylesheet to determine whether the implementation makes particular extensions available,
and to specify what happens if those extensions are not available. If an XSLT stylesheet is careful to make use of these mechanisms, it is
possible for it to take advantage of extensions and still retain portability.

18.1 Extension Functions

The set of functions that can be called from a FunctionCall XP within an XPath expression may include one or more extension functions. The
expanded-QName of an extension function always has a non-null namespace URI.

18.1.1 Testing Availability of Functions

Page 104 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The function-available function can be used with the [xsl:]use-when attribute (see 3.12 Conditional Element Inclusion) to explicitly control
how a stylesheet behaves if a particular extension function is not available.

function-available($function-name as xs:string) as xs:boolean

A function is said to be available within an XPath expression if it is present in the in-scope functionsXP for that expression (see 5.4.1
Initializing the Static Context). Functions in the static context are uniquely identified by the name of the function (a QName) in combination
with its arity.

The value of the $function-name argument MUST be a string containing a lexical QName. The lexical QName is expanded into an expanded-
QName using the namespace declarations in scope for the expression. If the lexical QName is unprefixed, then the standard function
namespace is used in the expanded QName.

The two-argument version of the function-available function returns true if and only if there is an available function whose name matches
the value of the $function-name argument and whose arity matches the value of the $arity argument.

The single-argument version of the function-available function returns true if and only if there is at least one available function (with some
arity) whose name matches the value of the $function-name argument.

[ERR XTDE1400] It is a non-recoverable dynamic error if the argument does not evaluate to a string that is a valid QName, or if there is no
namespace declaration in scope for the prefix of the QName. If the processor is able to detect the error statically (for example, when the
argument is supplied as a string literal), then the processor MAY optionally signal this as a static error.

When backwards compatible behavior is enabled, the function-available function returns false in respect of a function name and arity for
which no implementation is available (other than the fallback error function that raises a dynamic error whenever it is called). This means
that it is possible (as in XSLT 1.0) to use logic such as the following to test whether a function is available before calling it:

Example: Calling an extension function with backwards-compatibility enabled
<summary xsl:version="1.0">
 <xsl:choose>
 <xsl:when test="function-available('my:summary')">
 <xsl:value-of select="my:summary()"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>Summary not available</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
</summary>

Note:

The fact that a function with a given name is available gives no guarantee that any particular call on the function will be successful. For
example, it is not possible to determine the types of the arguments expected.

Note:

In XSLT 2.0 (without backwards compatibility enabled) a static error occurs when an XPath expression references a function that is not
available. This is true even in a part of the stylesheet that uses forwards-compatible behavior. Therefore, the conditional logic to test
whether a function is available before calling it should normally be written in a use-when attribute (see 3.12 Conditional Element
Inclusion).

Example: Stylesheet portable between XSLT 1.0 and XSLT 2.0

A stylesheet that is designed to use XSLT 2.0 facilities when they are available, but to fall back to XSLT 1.0 capabilities when not, might
be written using the code:

<out xsl:version="2.0">
 <xsl:choose>
 <xsl:when test="function-available('matches')">
 <xsl:value-of select="matches($input, '[a-z]*')"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="string-length(
 translate($in, 'abcdefghijklmnopqrstuvwxyz', '')) = 0"/>
 </xsl:otherwise>
 </xsl:choose>
</out>

Here an XSLT 2.0 processor will always take the xsl:when branch, while a 1.0 processor will follow the xsl:otherwise branch. The
single-argument version of the function-available function is used here, because that is the only version available in XSLT 1.0. Under
the rules of XSLT 1.0, the call on the matches function is not an error, because it is never evaluated.

Example: Stylesheet portable between XSLT 2.0 and a future version of XSLT

A stylesheet that is designed to use facilities in some future XSLT version when they are available, but to fall back to XSLT 2.0

function-available($function-name as xs:string,
$arity as xs:integer) as xs:boolean

Page 105 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

capabilities when not, might be written using code such as the following. This hypothesizes the availability in some future version of a
function pad which pads a string to a fixed length with spaces:

 <xsl:value-of select="pad($input, 10)"
 use-when="function-available('pad', 2)"/>
 <xsl:value-of select="concat($input, string-join(
 for $i in 1 to 10 - string-length($input)
 return ' ', ''))"
 use-when="not(function-available('pad', 2))"/>

In this case the two-argument version of function-available is used, because there is no requirement for this code to run under XSLT
1.0.

18.1.2 Calling Extension Functions

If the function name used in a FunctionCall XP within an XPath expression identifies an extension function, then to evaluate the FunctionCall
XP, the processor will first evaluate each of the arguments in the FunctionCall XP. If the processor has information about the data types
expected by the extension function, then it MAY perform any necessary type conversions between the XPath data types and those defined by
the implementation language. If multiple extension functions are available with the same name, the processor MAY decide which one to
invoke based on the number of arguments, the types of the arguments, or any other criteria. The result returned by the implementation is
returned as the result of the function call, again after any necessary conversions between the data types of the implementation language and
those of XPath. The details of such type conversions are outside the scope of this specification.

[ERR XTDE1420] It is a non-recoverable dynamic error if the arguments supplied to a call on an extension function do not satisfy the rules
defined for that particular extension function, or if the extension function reports an error, or if the result of the extension function cannot be
converted to an XPath value.

Note:

Implementations may also provide mechanisms allowing extension functions to report recoverable dynamic errors, or to execute within
an environment that treats some or all of the errors listed above as recoverable.

[ERR XTDE1425] When backwards compatible behavior is enabled, it is a non-recoverable dynamic error to evaluate an extension function call
if no implementation of the extension function is available.

Note:

When backwards-compatible behavior is not enabled, this is a static error [XPST0017].

Note:

There is no prohibition on calling extension functions that have side-effects (for example, an extension function that writes data to a file).
However, the order of execution of XSLT instructions is not defined in this specification, so the effects of such functions are
unpredictable.

Implementations are not REQUIRED to perform full validation of values returned by extension functions. It is an error for an extension function
to return a string containing characters that are not permitted in XML, but the consequences of this error are implementation-defined. The
implementation MAY raise an error, MAY convert the string to a string containing valid characters only, or MAY treat the invalid characters as if
they were permitted characters.

Note:

The ability to execute extension functions represents a potential security weakness, since untrusted stylesheets may invoke code that
has privileged access to resources on the machine where the processor executes. Implementations may therefore provide mechanisms
that restrict the use of extension functions by untrusted stylesheets.

All observations in this section regarding the errors that can occur when invoking extension functions apply equally when invoking extension
instructions.

18.1.3 External Objects

An implementation MAY allow an extension function to return an object that does not have any natural representation in the XDM data model,
either as an atomic value or as a node. For example, an extension function sql:connect might return an object that represents a connection
to a relational database; the resulting connection object might be passed as an argument to calls on other extension functions such as
sql:insert and sql:select.

The way in which such objects are represented in the type system is implementation-defined. They might be represented by a completely
new data type, or they might be mapped to existing data types such as integer, string, or anyURI.

18.1.4 Testing Availability of Types

The type-available function can be used, for example with the [xsl:]use-when attribute (see 3.12 Conditional Element Inclusion), to
explicitly control how a stylesheet behaves if a particular schema type is not available in the static context.

type-available($type-name as xs:string) as xs:boolean

A schema type (that is, a simple type or a complex type) is said to be available within an XPath expression if it is a type definition that is
present in the in-scope schema typesXP for that expression (see 5.4.1 Initializing the Static Context). This includes built-in types, types
imported using xsl:import-schema, and extension types defined by the implementation.

The value of the $type-name argument MUST be a string containing a lexical QName. The lexical QName is expanded into an expanded-
QName using the namespace declarations in scope for the expression. If the lexical QName is unprefixed, then the default namespace is

Page 106 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

used in the expanded QName.

The function returns true if and only if there is an available type whose name matches the value of the $type-name argument.

[ERR XTDE1428] It is a non-recoverable dynamic error if the argument does not evaluate to a string that is a valid QName, or if there is no
namespace declaration in scope for the prefix of the QName. If the processor is able to detect the error statically (for example, when the
argument is supplied as a string literal), then the processor MAY optionally signal this as a static error.

18.2 Extension Instructions

[DEFINITION: The extension instruction mechanism allows namespaces to be designated as extension namespaces. When a namespace is
designated as an extension namespace and an element with a name from that namespace occurs in a sequence constructor, then the
element is treated as an instruction rather than as a literal result element.] The namespace determines the semantics of the instruction.

Note:

Since an element that is a child of an xsl:stylesheet element is not occurring in a sequence constructor, user-defined data elements
(see 3.6.2 User-defined Data Elements) are not extension elements as defined here, and nothing in this section applies to them.

18.2.1 Designating an Extension Namespace

A namespace is designated as an extension namespace by using an [xsl:]extension-element-prefixes attribute on an element in the
stylesheet (see 3.5 Standard Attributes). The attribute MUST be in the XSLT namespace only if its parent element is not in the XSLT
namespace. The value of the attribute is a whitespace-separated list of namespace prefixes. The namespace bound to each of the prefixes
is designated as an extension namespace.

The default namespace (as declared by xmlns) may be designated as an extension namespace by including #default in the list of
namespace prefixes.

[ERR XTSE1430] It is a static error if there is no namespace bound to the prefix on the element bearing the [xsl:]extension-element-
prefixes attribute or, when #default is specified, if there is no default namespace.

The designation of a namespace as an extension namespace is effective for the element bearing the [xsl:]extension-element-prefixes
attribute and for all descendants of that element within the same stylesheet module.

18.2.2 Testing Availability of Instructions

The element-available function can be used with the xsl:choose and xsl:if instructions, or with the [xsl:]use-when attribute (see 3.12
Conditional Element Inclusion) to explicitly control how a stylesheet behaves when a particular XSLT instruction or extension instruction is
(or is not) available.

element-available($element-name as xs:string) as xs:boolean

The value of the $element-name argument MUST be a string containing a QName. The QName is expanded into an expanded-QName using
the namespace declarations in scope for the expression. If there is a default namespace in scope, then it is used to expand an unprefixed
QName. The element-available function returns true if and only if the expanded-QName is the name of an instruction. If the expanded-
QName has a namespace URI equal to the XSLT namespace URI, then it refers to an element defined by XSLT. Otherwise, it refers to an
extension instruction. If the expanded-QName has a null namespace URI, the element-available function will return false.

[ERR XTDE1440] It is a non-recoverable dynamic error if the argument does not evaluate to a string that is a valid QName, or if there is no
namespace declaration in scope for the prefix of the QName. If the processor is able to detect the error statically (for example, when the
argument is supplied as a string literal), then the processor MAY optionally signal this as a static error.

If the expanded-QName is in the XSLT namespace, the function returns true if and only if the expanded QName is the name of an XSLT
instruction, that is, an XSLT element whose syntax summary in this specification classifies it as an instruction.

Note:

Although the result of applying this function to a name in the XSLT namespace when using a conformant XSLT 2.0 processor is entirely
predictable, the function is useful in cases where the stylesheet might be executing under a processor that implements some other
version of XSLT with different rules.

If the expanded-QName is not in the XSLT namespace, the function returns true if and only if the processor has an implementation available
of an extension instruction with the given expanded QName. This applies whether or not the namespace has been designated as an
extension namespace.

If the processor does not have an implementation of a particular extension instruction available, and such an extension instruction is
evaluated, then the processor MUST perform fallback for the element as specified in 18.2.3 Fallback. An implementation MUST NOT signal an
error merely because the stylesheet contains an extension instruction for which no implementation is available.

18.2.3 Fallback

<!-- Category: instruction -->
<xsl:fallback>
 <!-- Content: sequence-constructor -->
</xsl:fallback>

The content of an xsl:fallback element is a sequence constructor, and when performing fallback, the value returned by the xsl:fallback
element is the result of evaluating this sequence constructor.

When not performing fallback, evaluating an xsl:fallback element returns an empty sequence: the content of the xsl:fallback element is
ignored.

There are two situations where a processor performs fallback: when an extension instruction that is not available is evaluated, and when an
instruction in the XSLT namespace, that is not defined in XSLT 2.0, is evaluated within a region of the stylesheet for which forwards

Page 107 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

compatible behavior is enabled.

Note:

Fallback processing is not invoked in other situations, for example it is not invoked when an XPath expression uses unrecognized
syntax or contains a call to an unknown function. To handle such situations dynamically, the stylesheet should call functions such as
system-property and function-available to decide what capabilities are available.

[ERR XTDE1450] When a processor performs fallback for an extension instruction that is not recognized, if the instruction element has one or
more xsl:fallback children, then the content of each of the xsl:fallback children MUST be evaluated; it is a non-recoverable dynamic error
if it has no xsl:fallback children.

Note:

This is different from the situation with unrecognized XSLT elements. As explained in 3.9 Forwards-Compatible Processing, an
unrecognized XSLT element appearing within a sequence constructor is a static error unless (a) forwards-compatible behavior is
enabled, and (b) the instruction has an xsl:fallback child.

19 Final Result Trees

The output of a transformation is a set of one or more final result trees.

A final result tree can be created explicitly, by evaluating an xsl:result-document instruction. As explained in 2.4 Executing a
Transformation, a final result tree is also created implicitly if no xsl:result-document instruction is evaluated, or if the result of evaluating the
initial template is a non-empty sequence.

The way in which a final result tree is delivered to an application is implementation-defined.

Serialization of final result trees is described further in 20 Serialization

19.1 Creating Final Result Trees

<!-- Category: instruction -->
<xsl:result-document
 format? = { qname }
 href? = { uri-reference }
 validation? = "strict" | "lax" | "preserve" | "strip"
 type? = qname
 method? = { "xml" | "html" | "xhtml" | "text" | qname-but-not-ncname }
 byte-order-mark? = { "yes" | "no" }
 cdata-section-elements? = { qnames }
 doctype-public? = { string }
 doctype-system? = { string }
 encoding? = { string }
 escape-uri-attributes? = { "yes" | "no" }
 include-content-type? = { "yes" | "no" }
 indent? = { "yes" | "no" }
 media-type? = { string }
 normalization-form? = { "NFC" | "NFD" | "NFKC" | "NFKD" | "fully-normalized" | "none" | nmtoken }
 omit-xml-declaration? = { "yes" | "no" }
 standalone? = { "yes" | "no" | "omit" }
 undeclare-prefixes? = { "yes" | "no" }
 use-character-maps? = qnames
 output-version? = { nmtoken }>
 <!-- Content: sequence-constructor -->
</xsl:result-document>

The xsl:result-document instruction is used to create a final result tree. The content of the xsl:result-document element is a sequence
constructor for the children of the document node of the tree. A document node is created, and the sequence obtained by evaluating the
sequence constructor is used to construct the content of the document, as described in 5.7.1 Constructing Complex Content. The tree rooted
at this document node forms the final result tree.

The xsl:result-document instruction defines the URI of the result tree, and may optionally specify the output format to be used for
serializing this tree.

The effective value of the format attribute, if specified, MUST be a lexical QName. The QName is expanded using the namespace
declarations in scope for the xsl:result-document element. The expanded-QName MUST match the expanded QName of a named output
definition in the stylesheet. This identifies the xsl:output declaration that will control the serialization of the final result tree (see 20
Serialization), if the result tree is serialized. If the format attribute is omitted, the unnamed output definition is used to control serialization of
the result tree.

[ERR XTDE1460] It is a non-recoverable dynamic error if the effective value of the format attribute is not a valid lexical QName, or if it does not
match the expanded-QName of an output definition in the stylesheet. If the processor is able to detect the error statically (for example, when
the format attribute contains no curly brackets), then the processor MAY optionally signal this as a static error.

Note:

The only way to select the unnamed output definition is to omit the format attribute.

The attributes method, byte-order-mark cdata-section-elements, doctype-public, doctype-system, encoding, escape-uri-attributes,
indent, media-type, normalization-form, omit-xml-declaration, standalone, undeclare-prefixes, use-character-maps, and output-
version may be used to override attributes defined in the selected output definition.

With the exception of use-character-maps, these attributes are all defined as attribute value templates, so their values may be set
dynamically. For any of these attributes that is present on the xsl:result-document instruction, the effective value of the attribute overrides
or supplements the corresponding value from the output definition. This works in the same way as when one xsl:output declaration
overrides another:

Page 108 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

In the case of cdata-section-elements, the value of the serialization parameter is the union of the expanded names of the elements
named in this instruction and the elements named in the selected output definition;
In the case of use-character-maps, the character maps referenced in this instruction supplement and take precedence over those
defined in the selected output definition;
In all other cases, the effective value of an attribute actually present on this instruction takes precedence over the value defined in the
selected output definition.

Note:

In the case of the attributes method, cdata-section-elements, and use-character-maps, the effective value of the attribute contains one
or more lexical QNames. The prefix in such a QName is expanded using the in-scope namespaces for the xsl:result-document
element. In the case of cdata-section-elements, an unprefixed element name is expanded using the default namespace.

The output-version attribute on the xsl:result-document instruction overrides the version attribute on xsl:output (it has been renamed
because version is available with a different meaning as a standard attribute: see 3.5 Standard Attributes). In all other cases, attributes
correspond if they have the same name.

There are some serialization parameters that apply to some output methods but not to others. For example, the indent attribute has no
effect on the text output method. If a value is supplied for an attribute that is inapplicable to the output method, its value is not passed to the
serializer. The processor MAY validate the value of such an attribute, but is not REQUIRED to do so.

The href attribute is optional. The default value is the zero-length string. The effective value of the attribute MUST be a URI Reference, which
may be absolute or relative. There MAY be implementation-defined restrictions on the form of absolute URI that may be used, but the
implementation is not REQUIRED to enforce any restrictions. Any legal relative URI MUST be accepted. Note that the zero-length string is a
legal relative URI.

The base URI of the document node at the root of the final result tree is based on the effective value of the href attribute. If the effective
value is a relative URI, then it is resolved relative to the base output URI. If the implementation provides an API to access final result trees,
then it MUST allow a final result tree to be identified by means of this base URI.

Note:

The base URI of the final result tree is not necessarily the same thing as the URI of its serialized representation on disk, if any. For
example, a server (or browser client) might store final result trees only in memory, or in an internal disk cache. As long as the processor
satisfies requests for those URIs, it is irrelevant where they are actually written on disk, if at all.

Note:

It will often be the case that one final result tree contains links to another final result tree produced during the same transformation, in
the form of a relative URI. The mechanism of associating a URI with a final result tree has been chosen to allow the integrity of such
links to be preserved when the trees are serialized.

As well as being potentially significant in any API that provides access to final result trees, the base URI of the new document node is
relevant if the final result tree, rather than being serialized, is supplied as input to a further transformation.

The optional attributes type and validation may be used on the xsl:result-document instruction to validate the contents of the new
document, and to determine the type annotation that elements and attributes within the final result tree will carry. The permitted values and
their semantics are described in 19.2.2 Validating Document Nodes.

A processor MAY allow a final result tree to be serialized. Serialization is described in 20 Serialization. However, an implementation (for
example, a processor running in an environment with no access to writable filestore) is not REQUIRED to support the serialization of final
result trees. An implementation that does not support the serialization of final result trees MAY ignore the format attribute and the
serialization attributes. Such an implementation MUST provide the application with some means of access to the (un-serialized) result tree,
using its URI to identify it.

Implementations may provide additional mechanisms, outside the scope of this specification, for defining the way in which final result trees
are processed. Such mechanisms MAY make use of the XSLT-defined attributes on the xsl:result-document and/or xsl:output elements,
or they MAY use additional elements or attributes in an implementation-defined namespace.

Example: Multiple Result Documents

The following example takes an XHTML document as input, and breaks it up so that the text following each <h1> element is included in
a separate document. A new document toc.html is constructed to act as an index:

<xsl:stylesheet
 version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xhtml="http://www.w3.org/1999/xhtml">

<xsl:output name="toc-format" method="xhtml" indent="yes"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
 doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"/>

<xsl:output name="section-format" method="xhtml" indent="no"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"/>

<xsl:template match="/">
 <xsl:result-document href="toc.html" format="toc-format" validation="strict">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head><title>Table of Contents</title></head>
 <body>
 <h1>Table of Contents</h1>
 <xsl:for-each select="/*/xhtml:body/(*[1] | xhtml:h1)">
 <p><xsl:value-of select="."/></p>
 </xsl:for-each>
 </body>

Page 109 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 </html>
 </xsl:result-document>
 <xsl:for-each-group select="/*/xhtml:body/*" group-starting-with="xhtml:h1">
 <xsl:result-document href="section{position()}.html"
 format="section-format" validation="strip">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head><title><xsl:value-of select="."/></title></head>
 <body>
 <xsl:copy-of select="current-group()"/>
 </body>
 </html>
 </xsl:result-document>
 </xsl:for-each-group>
</xsl:template>

</xsl:stylesheet>

There are restrictions on the use of the xsl:result-document instruction, designed to ensure that the results are fully interoperable even
when processors optimize the sequence in which instructions are evaluated. Informally, the restriction is that the xsl:result-document
instruction can only be used while writing a final result tree, not while writing to a temporary tree or a sequence. This restriction is defined
formally as follows.

[DEFINITION: Each instruction in the stylesheet is evaluated in one of two possible output states: final output state or temporary output state].

[DEFINITION: The first of the two output states is called final output state. This state applies when instructions are writing to a final result
tree.]

[DEFINITION: The second of the two output states is called temporary output state. This state applies when instructions are writing to a
temporary tree or any other non-final destination.]

The instructions in the initial template are evaluated in final output state. An instruction is evaluated in the same output state as its calling
instruction, except that xsl:variable, xsl:param, xsl:with-param, xsl:attribute, xsl:comment, xsl:processing-instruction,
xsl:namespace, xsl:value-of, xsl:function, xsl:key, xsl:sort, and xsl:message always evaluate the instructions in their contained
sequence constructor in temporary output state.

[ERR XTDE1480] It is a non-recoverable dynamic error to evaluate the xsl:result-document instruction in temporary output state.

[ERR XTDE1490] It is a non-recoverable dynamic error for a transformation to generate two or more final result trees with the same URI.

Note:

Note, this means that it is an error to evaluate more than one xsl:result-document instruction that omits the href attribute, or to
evaluate any xsl:result-document instruction that omits the href attribute if an initial final result tree is created implicitly.

Technically, the result of evaluating the xsl:result-document instruction is an empty sequence. This means it does not contribute any nodes
to the result of the sequence constructor it is part of.

[ERR XTRE1495] It is a recoverable dynamic error for a transformation to generate two or more final result trees with URIs that identify the
same physical resource. The optional recovery action is implementation-dependent, since it may be impossible for the processor to detect
the error.

[ERR XTRE1500] It is a recoverable dynamic error for a stylesheet to write to an external resource and read from the same resource during a
single transformation, whether or not the same URI is used to access the resource in both cases. The optional recovery action is
implementation-dependent: implementations are not REQUIRED to detect the error condition. Note that if the error is not detected, it is
undefined whether the document that is read from the resource reflects its state before or after the result tree is written.

19.2 Validation

It is possible to control the type annotation applied to individual element and attribute nodes as they are constructed. This is done using the
type and validation attributes of the xsl:element, xsl:attribute, xsl:copy, xsl:copy-of, xsl:document, and xsl:result-document
instructions, or the xsl:type and xsl:validation attributes of a literal result element.

The [xsl:]type attribute is used to request validation of an element or attribute against a specific simple or complex type defined in a
schema. The [xsl:]validation attribute is used to request validation against the global element or attribute declaration whose name
matches the name of the element or attribute being validated.

The [xsl:]type and [xsl:]validation attributes are mutually exclusive. Both are optional, but if one is present then the other MUST be
omitted. If both attributes are omitted, the effect is the same as specifying the validation attribute with the value specified in the default-
validation attribute of the containing xsl:stylesheet element; if this is not specified, the effect is the same as specifying
validation="strip".

[ERR XTSE1505] It is a static error if both the [xsl:]type and [xsl:]validation attributes are present on the xsl:element, xsl:attribute,
xsl:copy, xsl:copy-of, xsl:document, or xsl:result-document instructions, or on a literal result element.

The detailed rules for validation vary depending on the kind of node being validated. The rules for element and attribute nodes are given in
19.2.1 Validating Constructed Elements and Attributes, while those for document nodes are given in 19.2.2 Validating Document Nodes.

19.2.1 Validating Constructed Elements and Attributes

19.2.1.1 Validation using the [xsl:]validation Attribute

The [xsl:]validation attribute defines the validation action to be taken. It determines not only the type annotation of the node that is
constructed by the relevant instruction itself, but also the type annotations of all element and attribute nodes that have the constructed node
as an ancestor. Conceptually, the validation requested for a child element or attribute node is applied before the validation requested for its
parent element. For example, if the instruction that constructs a child element specifies validation="strict", this will cause the child
element to be checked against an element declaration, but if the instruction that constructs its parent element specifies validation="strip",

Page 110 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

then the final effect will be that the child node is annotated as xs:untyped.

In the paragraphs below, the term contained nodes means the elements and attributes that have the newly constructed node as an ancestor.

The value strip indicates that the new node and each of the contained nodes will have the type annotation xs:untyped if it is an
element, or xs:untypedAtomic if it is an attribute. Any previous type annotation present on a contained element or attribute node (for
example, a type annotation that is present on an element copied from a source document) is also replaced by xs:untyped or
xs:untypedAtomic as appropriate. The typed value of the node is changed to be the same as its string value, as an instance of
xs:untypedAtomic. In the case of elements the nilled property is set to false. The values of the is-id and is-idrefs properties are
unchanged. Schema validation is not invoked.
The value preserve indicates that nodes that are copied will retain their type annotations, but nodes whose content is newly
constructed will be annotated as xs:anyType in the case of elements, or xs:untypedAtomic in the case of attributes. Schema validation
is not invoked. The detailed effect depends on the instruction:

In the case of xsl:element and literal result elements, the new element has a type annotation of xs:anyType, and the type
annotations of contained nodes are retained unchanged.
In the case of xsl:attribute, the effect is exactly the same as specifying validation="strip": that is, the new attribute will have
the type annotation xs:untypedAtomic.
In the case of xsl:copy-of, all the nodes that are copied will retain their type annotations unchanged.
In the case of xsl:copy, the effect depends on the kind of node being copied.

1. Where the node being copied is an attribute, the copied attribute will retain its type annotation.
2. Where the node being copied is an element, the copied element will have a type annotation of xs:anyType (because this

instruction does not copy the content of the element, it would be wrong to assume that the type is unchanged); but any
contained nodes will have their type annotations retained in the same way as with xsl:element.

The value strict indicates that type annotations are established by performing strict schema validity assessment on the element or
attribute node created by this instruction as follows:

In the case of an element, a top-level element declaration is identified whose local name and namespace (if any) match the name
of the element, and schema-validity assessment is carried out according to the rules defined in [XML Schema Part 1] (section
3.3.4 "Element Declaration Validation Rules", validation rule "Schema-Validity Assessment (Element)", clauses 1.1 and 2, using
the top-level element declaration as the "declaration stipulated by the processor", which is mentioned in clause 1.1.1.1). The
element is considered valid if the result of the schema validity assessment is a PSVI in which the relevant element node has a
validity property whose value is valid. If there is no matching element declaration, or if the element is not considered valid, the
transformation fails [see ERR XTTE1510], [see ERR XTTE1512]. In effect this means that the element being validated MUST be declared
using a top-level declaration in the schema, and MUST conform to its declaration. The process of validation applies recursively to
contained elements and attributes to the extent required by the schema definition.

Note:
It is not an error if the identified type definition is a simple type, although [XML Schema Part 1] does not define explicitly that
this case is permitted.

In the case of an attribute, a top-level attribute declaration is identified whose local name and namespace (if any) match the
name of the attribute, and schema-validity assessment is carried out according to the rules defined in [XML Schema Part 1]
(section 3.2.4 "Attribute Declaration Validation Rules", validation rule "Schema-Validity Assessment (Attribute)"). The attribute is
considered valid if the result of the schema validity assessment is a PSVI in which the relevant attribute node has a validity
property whose value is valid. If the attribute is not considered valid, the transformation fails [see ERR XTTE1510]. In effect this
means that the attribute being validated MUST be declared using a top-level declaration in the schema, and MUST conform to its
declaration.
The schema components used to validate an element or attribute may be located in any way described by [XML Schema Part 1]
(see section 4.3.2, How schema documents are located on the Web). The components in the schema constructed from the
synthetic schema document (see 3.14 Importing Schema Components) will always be available for validating constructed nodes;
if additional schema components are needed, they MAY be located in other ways, for example implicitly from knowledge of the
namespace in which the elements and attributes appear, or using the xsi:schemaLocation attribute of elements within the tree
being validated.
If no validation is performed for a node, which can happen when the schema specifies lax or skip validation for that node or for a
subtree, then the node is annotated as xs:anyType in the case of an element, and xs:untypedAtomic in the case of an attribute.

The value lax has the same effect as the value strict, except that whereas strict validation fails if there is no matching top-level
element declaration or if the outcome of validity assessment is a validity property of invalid or notKnown, lax validation fails only if
the outcome of validity assessment is a validity property of invalid. That is, lax validation does not cause a type error when the
outcome is notKnown.
In practice this means that the element or attribute being validated MUST conform to its declaration if a top-level declaration is available.
If no such declaration is available, then the element or attribute is not validated, but its attributes and children are validated, again with
lax validation. Any nodes whose validation outcome is a validity property of notKnown are annotated as xs:anyType in the case of an
element, and xs:untypedAtomic in the case of an attribute.

Note:
When the parent element lacks a declaration, the XML Schema specification defines the recursive checking of children and
attributes as optional. For this specification, this recursive checking is required.
Note:
If an element that is being validated has an xsi:type attribute, then the value of the xsi:type attribute will be taken into account
when performing the validation. However, the presence of an xsi:type attribute will not of itself cause an element to be validated:
if validation against a named type is required, as distinct from validation against a top-level element declaration, then it must be
requested using the XSLT [xsl:]type attribute on the instruction that invokes the validation, as described in section 19.2.1.2
Validation using the [xsl:]type Attribute

[ERR XTTE1510] If the validation attribute of an xsl:element, xsl:attribute, xsl:copy, xsl:copy-of, or xsl:result-document instruction, or
the xsl:validation attribute of a literal result element, has the effective value strict, and schema validity assessment concludes that the
validity of the element or attribute is invalid or unknown, a type error occurs. As with other type errors, the error MAY be signaled statically if it
can be detected statically.

[ERR XTTE1512] If the validation attribute of an xsl:element, xsl:attribute, xsl:copy, xsl:copy-of, or xsl:result-document instruction, or
the xsl:validation attribute of a literal result element, has the effective value strict, and there is no matching top-level declaration in the
schema, then a type error occurs. As with other type errors, the error MAY be signaled statically if it can be detected statically.

[ERR XTTE1515] If the validation attribute of an xsl:element, xsl:attribute, xsl:copy, xsl:copy-of, or xsl:result-document instruction, or

Page 111 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

the xsl:validation attribute of a literal result element, has the effective value lax, and schema validity assessment concludes that the
element or attribute is invalid, a type error occurs. As with other type errors, the error MAY be signaled statically if it can be detected
statically.

Note:

No mechanism is provided to validate an element or attribute against a local declaration in a schema. Such validation can usually be
achieved by applying validation to a containing element for which a top-level element declaration exists.

19.2.1.2 Validation using the [xsl:]type Attribute

The [xsl:]type attribute takes as its value a QName. This MUST be the name of a type definition included in the in-scope schema components
for the stylesheet. If the QName has no prefix, it is expanded using the default namespace established using the effective [xsl:]xpath-
default-namespace attribute if there is one; otherwise, it is taken as being a name in no namespace.

If the [xsl:]type attribute is present, then the newly constructed element or attribute is validated against the type definition identified by this
attribute.

In the case of an element, schema-validity assessment is carried out according to the rules defined in [XML Schema Part 1] (section
3.3.4 "Element Declaration Validation Rules", validation rule "Schema-Validity Assessment (Element)", clauses 1.2 and 2), using this
type definition as the "processor-stipulated type definition". The element is considered valid if the result of the schema validity
assessment is a PSVI in which the relevant element node has a validity property whose value is valid.
In the case of an attribute, the attribute is considered valid if (in the terminology of XML Schema) the attribute's normalized value is
locally valid with respect to that type definition according to the rules for "String Valid" ([XML Schema Part 1], section 3.14.4).
(Normalization here refers to the process of normalizing whitespace according to the rules of the whiteSpace facet for the data type).
If the element or attribute is not considered valid, as defined above, the transformation fails [see ERR XTTE1540].

[ERR XTSE1520] It is a static error if the value of the type attribute of an xsl:element, xsl:attribute, xsl:copy, xsl:copy-of, xsl:document, or
xsl:result-document instruction, or the xsl:type attribute of a literal result element, is not a valid QName, or if it uses a prefix that is not
defined in an in-scope namespace declaration, or if the QName is not the name of a type definition included in the in-scope schema
components for the stylesheet.

[ERR XTSE1530] It is a static error if the value of the type attribute of an xsl:attribute instruction refers to a complex type definition.

[ERR XTTE1540] It is a type error if an [xsl:]type attribute is defined for a constructed element or attribute, and the outcome of schema
validity assessment against that type is that the validity property of that element or attribute information item is other than valid.

Note:

Like other type errors, this error may be signaled statically if it can be detected statically. For example, the instruction <xsl:attribute
name="dob" type="xs:date">1999-02-29</xsl:attribute> may result in a static error being signaled. If the error is not signaled
statically, it will be signaled when the instruction is evaluated.

19.2.1.3 The Validation Process

As well as checking for validity against the schema, the validity assessment process causes type annotations to be associated with element
and attribute nodes. If default values for elements or attributes are defined in the schema, the validation process will where necessary create
new nodes containing these default values.

Validation of an element or attribute node only takes into account constraints on the content of the element or attribute. Validation rules
affecting the document as a whole are not applied. Specifically, this means:

The validation rule "Validation Root Valid (ID/IDREF)" is not applied. This means that validation will not fail if there are non-unique ID
values or dangling IDREF values in the subtree being validated.
The validation rule "Validation Rule: Identity-constraint Satisfied" is not applied.
There is no check that the document contains unparsed entities whose names match the values of nodes of type xs:ENTITY or
xs:ENTITIES. (XSLT 2.0 provides no facility to construct unparsed entities within a tree.)
There is no check that the document contains notations whose names match the values of nodes of type xs:NOTATION. (The XDM data
model makes no provision for notations to be represented in the tree.)

With these caveats, validating a newly constructed element, using strict or lax validation, is equivalent to the following steps:

1. The element is serialized to textual XML form, according to the rules defined in [XSLT and XQuery Serialization] using the XML output
method, with all parameters defaulted. Note that this process discards any existing type annotations.

2. The resulting XML document is parsed to create an XML Information Set (see [XML Information Set].)
3. The Information Set produced in the previous step is validated according to the rules in [XML Schema Part 1]. The result of this step is

a Post-Schema Validation Infoset (PSVI). If the validation process is not successful (as defined above), a type error is raised.
4. The PSVI produced in the previous step is converted back into the XDM data model by the mapping described in [Data Model] (Section

3.3.1 Mapping PSVI Additions to Node PropertiesDM). This process creates nodes with simple or complex type annotations based on
the types established during schema validation.

Validating an attribute using strict or lax validation requires a modified version of this procedure. A copy of the attribute is first added to an
element node that is created for the purpose, and namespace fixup (see 5.7.3 Namespace Fixup) is performed on this element node. The
name of this element is of no consequence, but it must be the same as the name of a synthesized element declaration of the form:

<xs:element name="E">
 <xs:complexType>
 <xs:sequence/>
 <xs:attribute ref="A"/>
 </xs:complexType>
</xs:element>

where A is the name of the attribute being validated.

Page 112 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

This synthetic element is then validated using the procedure given above for validating elements, and if it is found to be valid, a copy of the
validated attribute is made, retaining its type annotation, but detaching it from the containing element (and thus, from any namespace
nodes).

The XDM data model does not permit an attribute node with no parent to have a typed value that includes a namespace-qualified name, that
is, a value whose type is derived from xs:QName or xs:NOTATION. This restriction is imposed because these types rely on the namespace
nodes of a containing element to resolve namespace prefixes. Therefore, it is an error to validate a parentless attribute against such a type.
This affects the instructions xsl:attribute, xsl:copy, and xsl:copy-of.

[ERR XTTE1545] A type error occurs if a type or validation attribute is defined (explicitly or implicitly) for an instruction that constructs a new
attribute node, if the effect of this is to cause the attribute value to be validated against a type that is derived from, or constructed by list or
union from, the primitive types xs:QName or xs:NOTATION.

19.2.2 Validating Document Nodes

It is possible to apply validation to a document node. This happens when a new document node is constructed by one of the instructions
xsl:document, xsl:result-document, xsl:copy, or xsl:copy-of, and this instruction has a type attribute, or a validation attribute with the
value strict or lax.

Document-level validation is not applied to the document node that is created implicitly when a variable-binding element has no select
attribute and no as attribute (see 9.4 Creating implicit document nodes). This is equivalent to using validation="preserve" on xsl:document:
nodes within such trees retain their type annotation. Similarly, validation is not applied to document nodes created using xsl:message.

The values validation="preserve" and validation="strip" do not request validation. In the first case, all element and attribute nodes
within the tree rooted at the new document node retain their type annotations. In the second case, elements within the tree have their type
annotation set to xs:untyped, while attributes have their type annotation set to xs:untypedAtomic.

When validation is requested for a document node (that is, when validation is set to strict or lax, or when a type attribute is present), the
following processing takes place:

[ERR XTTE1550] A type error occurs unless the children of the document node comprise exactly one element node, no text nodes, and
zero or more comment and processing instruction nodes, in any order.
The single element node child is validated, using the supplied values of the validation and type attributes, as described in 19.2.1
Validating Constructed Elements and Attributes.

Note:
The type attribute on xsl:document and xsl:result-document, and on xsl:copy and xsl:copy-of when copying a document node,
thus refers to the required type of the element node that is the only element child of the document node. It does not refer to the
type of the document node itself.

The validation rule "Validation Root Valid (ID/IDREF)" is applied to the single element node child of the document node. This means
that validation will fail if there are non-unique ID values or dangling IDREF values in the document tree.
Identity constraints, as defined in section 3.11 of [XML Schema Part 1], are checked. (This refers to constraints defined using
xs:unique, xs:key, and xs:keyref.)
There is no check that the tree contains unparsed entities whose names match the values of nodes of type xs:ENTITY or xs:ENTITIES.
This is because there is no facility in XSLT 2.0 to create unparsed entities in a result tree. It is possible to add unparsed entity
declarations to the result document by referencing a suitable DOCTYPE during serialization.
There is no check that the document contains notations whose names match the values of nodes of type xs:NOTATION. This is because
notations are not part of the XDM data model. It is possible to add notations to the result document by referencing a suitable
DOCTYPE during serialization.
All other children of the document node (comments and processing instructions) are copied unchanged.

[ERR XTTE1555] It is a type error if, when validating a document node, document-level constraints are not satisfied. These constraints include
identity constraints (xs:unique, xs:key, and xs:keyref) and ID/IDREF constraints.

20 Serialization

A processor MAY output a final result tree as a sequence of octets, although it is not REQUIRED to be able to do so (see 21 Conformance).
Stylesheet authors can use xsl:output declarations to specify how they wish result trees to be serialized. If a processor serializes a final
result tree, it MUST do so as specified by these declarations.

The rules governing the output of the serializer are defined in [XSLT and XQuery Serialization]. The serialization is controlled using a
number of serialization parameters. The values of these serialization parameters may be set within the stylesheet, using the xsl:output,
xsl:result-document, and xsl:character-map declarations.

<!-- Category: declaration -->
<xsl:output
 name? = qname
 method? = "xml" | "html" | "xhtml" | "text" | qname-but-not-ncname
 byte-order-mark? = "yes" | "no"
 cdata-section-elements? = qnames
 doctype-public? = string
 doctype-system? = string
 encoding? = string
 escape-uri-attributes? = "yes" | "no"
 include-content-type? = "yes" | "no"
 indent? = "yes" | "no"
 media-type? = string
 normalization-form? = "NFC" | "NFD" | "NFKC" | "NFKD" | "fully-normalized" | "none" | nmtoken
 omit-xml-declaration? = "yes" | "no"
 standalone? = "yes" | "no" | "omit"
 undeclare-prefixes? = "yes" | "no"
 use-character-maps? = qnames
 version? = nmtoken />

The xsl:output declaration is optional; if used, it MUST always appear as a top-level element within a stylesheet module.

Page 113 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

A stylesheet may contain multiple xsl:output declarations and may include or import stylesheet modules that also contain xsl:output
declarations. The name of an xsl:output declaration is the value of its name attribute, if any.

[DEFINITION: All the xsl:output declarations in a stylesheet that share the same name are grouped into a named output definition; those
that have no name are grouped into a single unnamed output definition.]

A stylesheet always includes an unnamed output definition; in the absence of an unnamed xsl:output declaration, the unnamed output
definition is equivalent to the one that would be used if the stylesheet contained an xsl:output declaration having no attributes.

A named output definition is used when its name matches the format attribute used in an xsl:result-document element. The unnamed
output definition is used when an xsl:result-document element omits the format attribute. It is also used when serializing the final result
tree that is created implicitly in the absence of an xsl:result-document element.

All the xsl:output elements making up an output definition are effectively merged. For those attributes whose values are namespace-
sensitive, the merging is done after lexical QNames have been converted into expanded QNames. For the cdata-section-elements
attribute, the output definition uses the union of the values from all the constituent xsl:output declarations. For the use-character-maps
attribute, the output definition uses the concatenation of the sequences of expanded QNames values from all the constituent xsl:output
declarations, taking them in order of increasing import precedence, or where several have the same import precedence, in declaration order.
For other attributes, the output definition uses the value of that attribute from the xsl:output declaration with the highest import precedence.

[ERR XTSE1560] It is a static error if two xsl:output declarations within an output definition specify explicit values for the same attribute (other
than cdata-section-elements and use-character-maps), with the values of the attributes being not equal, unless there is another xsl:output
declaration within the same output definition that has higher import precedence and that specifies an explicit value for the same attribute.

If none of the xsl:output declarations within an output definition specifies a value for a particular attribute, then the corresponding
serialization parameter takes a default value. The default value depends on the chosen output method.

There are some serialization parameters that apply to some output methods but not to others. For example, the indent attribute has no
effect on the text output method. If a value is supplied for an attribute that is inapplicable to the output method, its value is not passed to the
serializer. The processor MAY validate the value of such an attribute, but is not REQUIRED to do so.

An implementation MAY allow the attributes of the xsl:output declaration to be overridden, or the default values to be changed, using the
API that controls the transformation.

The location to which final result trees are serialized (whether in filestore or elsewhere) is implementation-defined (which in practice MAY
mean that it is controlled using an implementation-defined API). However, these locations MUST satisfy the constraint that when two final
result trees are both created (implicitly or explicitly) using relative URIs in the href attribute of the xsl:result-document instruction, then
these relative URIs may be used to construct references from one tree to the other, and such references MUST remain valid when both result
trees are serialized.

The method attribute on the xsl:output element identifies the overall method that is to be used for outputting the final result tree.

[ERR XTSE1570] The value MUST (if present) be a valid QName. If the QName does not have a prefix, then it identifies a method specified in
[XSLT and XQuery Serialization] and MUST be one of xml, html, xhtml, or text. If the QName has a prefix, then the QName is expanded into
an expanded-QName as described in 5.1 Qualified Names; the expanded-QName identifies the output method; the behavior in this case is
not specified by this document.

The default for the method attribute depends on the contents of the tree being serialized, and is chosen as follows. If the document node of
the final result tree has an element child, and any text nodes preceding the first element child of the document node of the result tree contain
only whitespace characters, then:

If the expanded-QName of this first element child has local part html (in lower case), and namespace URI
http://www.w3.org/1999/xhtml, then the default output method is normally xhtml. However, if the version attribute of the
xsl:stylesheet element of the principal stylesheet module has the value 1.0, and if the result tree is generated implicitly (rather than
by an explicit xsl:result-document instruction), then the default output method in this situation is xml.
If the expanded-QName of this first element child has local part html (in any combination of upper and lower case) and a null
namespace URI, then the default output method is html.

In all other cases, the default output method is xml.

The default output method is used if the selected output definition does not include a method attribute.

The other attributes on xsl:output provide parameters for the output method. The following attributes are allowed:

The value of the encoding attribute provides the value of the encoding parameter to the serialization method. The default value is
implementation-defined, but in the case of the xml and xhtml methods it MUST be either UTF-8 or UTF-16.
The byte-order-mark attribute defines whether a byte order mark is written at the start of the file. If the value yes is specified, a byte
order mark is written; if no is specified, no byte order mark is written. The default value depends on the encoding used. If the encoding
is UTF-16, the default is yes; for UTF-8 it is implementation-defined, and for all other encodings it is no. The value of the byte order mark
indicates whether high order bytes are written before or after low order bytes; the actual byte order used is implementation-dependent ,
unless it is defined by the selected encoding.
The cdata-section-elements attribute is a whitespace-separated list of QNames. The default value is an empty list. After expansion of
these names using the in-scope namespace declarations for the xsl:output declaration in which they appear, this list of names
provides the value of the cdata-section-elements parameter to the serialization method. In the case of an unprefixed name, the
default namespace (that is, the namespace declared using xmlns="uri") is used.

Note:
This differs from the rule for most other QNames used in a stylesheet. The reason is that these names refer to elements in the
result document, and therefore follow the same convention as the name of a literal result element or the name attribute of
xsl:element.

The value of the doctype-system attribute provides the value of the doctype-system parameter to the serialization method. By default,
the parameter is not supplied.
The value of the doctype-public attribute provides the value of the doctype-public parameter to the serialization method. By default,
the parameter is not supplied.

Page 114 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The value of the escape-uri-attributes attribute provides the value of the escape-uri-attributes parameter to the serialization
method. The default value is yes.
The value of the include-content-type attribute provides the value of the include-content-type parameter to the serialization
method. The default value is yes.
The value of the indent attribute provides the value of the indent parameter to the serialization method. The default value is yes in the
case of the html and xhtml output methods, no in the case of the xml output method.
The value of the media-type attribute provides the value of the media-type parameter to the serialization method. The default value is
text/xml in the case of the xml output method, text/html in the case of the html and xhtml output methods, and text/plain in the
case of the text output method.
The value of the normalization-form attribute provides the value of the normalization-form parameter to the serialization method. A
value that is an NMTOKEN other than one of those enumerated for the normalization-form attribute specifes an implementation-defined
normalization form; the behavior in this case is not specified by this document. The default value is none.
The value of the omit-xml-declaration attribute provides the value of the omit-xml-declaration parameter to the serialization
method. The default value is no.
The value of the standalone attribute provides the value of the standalone parameter to the serialization method. The default value is
omit; this means that no standalone attribute is to be included in the XML declaration.
The undeclare-prefixes attribute is relevant only when producing output with method="xml" and version="1.1" (or later). It defines
whether namespace undeclarations (of the form xmlns:foo="") SHOULD be output when a child element has no namespace node with
the same name (that is, namespace prefix) as a namespace node of its parent element. The default value is no: this means that
namespace undeclarations are not output, which has the effect that when the resulting XML is reparsed, the new tree may contain
namespace nodes on the child element that were not there in the original tree before serialization.
The use-character-maps attribute provides a list of named character maps that are used in conjunction with this output definition. The
way this attribute is used is described in 20.1 Character Maps. The default value is an empty list.
The value of the version attribute provides the value of the version parameter to the serialization method. The set of permitted values,
and the default value, are implementation-defined. A serialization error will be reported if the requested version is not supported by the
implementation.

If the processor performs serialization, then it must signal any non-recoverable serialization errors that occur. These have the same effect as
non-recoverable dynamic errors: that is, the processor must signal the error and must not finish as if the transformation had been successful.

20.1 Character Maps

[DEFINITION: A character map allows a specific character appearing in a text or attribute node in the final result tree to be substituted by a
specified string of characters during serialization.] The effect of character maps is defined in [XSLT and XQuery Serialization].

The character map that is supplied as a parameter to the serializer is determined from the xsl:character-map elements referenced from the
xsl:output declaration for the selected output definition.

The xsl:character-map element is a declaration that may appear as a child of the xsl:stylesheet element.

<!-- Category: declaration -->
<xsl:character-map
 name = qname
 use-character-maps? = qnames>
 <!-- Content: (xsl:output-character*) -->
</xsl:character-map>

The xsl:character-map declaration declares a character map with a name and a set of character mappings. The character mappings are
specified by means of xsl:output-character elements contained either directly within the xsl:character-map element, or in further
character maps referenced in the use-character-maps attribute.

The REQUIRED name attribute provides a name for the character map. When a character map is used by an output definition or another
character map, the character map with the highest import precedence is used.

[ERR XTSE1580] It is a static error if the stylesheet contains two or more character maps with the same name and the same import
precedence, unless it also contains another character map with the same name and higher import precedence.

The optional use-character-maps attribute lists the names of further character maps that are included into this character map.

[ERR XTSE1590] It is a static error if a name in the use-character-maps attribute of the xsl:output or xsl:character-map elements does not
match the name attribute of any xsl:character-map in the stylesheet.

[ERR XTSE1600] It is a static error if a character map references itself, directly or indirectly, via a name in the use-character-maps attribute.

It is not an error if the same character map is referenced more than once, directly or indirectly.

An output definition, after recursive expansion of character maps referenced via its use-character-maps attribute, may contain several
mappings for the same character. In this situation, the last character mapping takes precedence. To establish the ordering, the following
rules are used:

Within a single xsl:character-map element, the characters defined in character maps referenced in the use-character-maps attribute
are considered before the characters defined in the child xsl:output-character elements.
The character maps referenced in a single use-character-maps attribute are considered in the order in which they are listed in that
attribute. The expansion is depth-first: each referenced character map is fully expanded before the next one is considered.
Two xsl:output-character elements appearing as children of the same xsl:character-map element are considered in document
order.

The xsl:output-character element is defined as follows:

<xsl:output-character
 character = char
 string = string />

Page 115 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The character map that is passed as a parameter to the serializer contains a mapping for the character specified in the character attribute to
the string specified in the string attribute.

Character mapping is not applied to characters for which output escaping has been disabled as described in 20.2 Disabling Output
Escaping.

If a character is mapped, then it is not subjected to XML or HTML escaping.

Example: Using Character Maps to Generate Non-XML Output

Character maps can be useful when producing serialized output in a format that resembles, but is not strictly conformant to, HTML or
XML. For example, when the output is a JSP page, there might be a need to generate the output:

<jsp:setProperty name="user" property="id" value='<%= "id" + idValue %>'/>

Although this output is not well-formed XML or HTML, it is valid in Java Server Pages. This can be achieved by allocating three Unicode
characters (which are not needed for any other purpose) to represent the strings <%, %>, and ", for example:

<xsl:character-map name="jsp">
 <xsl:output-character character="«" string="<%"/>
 <xsl:output-character character="»" string="%>"/>
 <xsl:output-character character="§" string='"'/>
</xsl:character-map>

When this character map is referenced in the xsl:output declaration, the required output can be produced by writing the following in
the stylesheet:

<jsp:setProperty name="user" property="id" value='«= §id§ + idValue »'/>

This works on the assumption that when an apostrophe or quotation mark is generated as part of an attribute value by the use of
character maps, the serializer will (where possible) use the other choice of delimiter around the attribute value.

Example: Constructing a Composite Character Map

The following example illustrates a composite character map constructed in a modular fashion:

<xsl:output name="htmlDoc" use-character-maps="htmlDoc" />

<xsl:character-map name="htmlDoc"
 use-character-maps="html-chars doc-entities windows-format" />

<xsl:character-map name="html-chars"
 use-character-maps="latin1 ..." />

<xsl:character-map name="latin1">
 <xsl:output-character character=" " string="&nbsp;" />
 <xsl:output-character character="¡" string="&iexcl;" />
 ...
</xsl:character-map>

<xsl:character-map name="doc-entities">
 <xsl:output-character character="" string="&t-and-c;" />
 <xsl:output-character character="" string="&chap1;" />
 <xsl:output-character character="" string="&chap2;" />
 ...
</xsl:character-map>

<xsl:character-map name="windows-format">
 <!-- newlines as CRLF -->
 <xsl:output-character character="
" string="
" />

 <!-- tabs as three spaces -->
 <xsl:output-character character="	" string=" " />

 <!-- images for special characters -->
 <xsl:output-character character=""
 string="" />
 <xsl:output-character character=""
 string="" />
 ...
</xsl:character-map>

20.2 Disabling Output Escaping

Normally, when using the XML, HTML, or XHTML output method, the serializer will escape special characters such as & and < when
outputting text nodes. This ensures that the output is well-formed. However, it is sometimes convenient to be able to produce output that is
almost, but not quite well-formed XML; for example, the output may include ill-formed sections which are intended to be transformed into
well-formed XML by a subsequent non-XML-aware process. For this reason, XSLT defines a mechanism for disabling output escaping.

This feature is deprecated.

Page 116 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

This is an optional feature: it is not REQUIRED that a XSLT processor that implements the serialization option SHOULD offer the ability to
disable output escaping, and there is no conformance level that requires this feature.

This feature requires an extension to the serializer described in [XSLT and XQuery Serialization]. Conceptually, the final result tree provides
an additional boolean property disable-escaping associated with every character in a text node. When this property is set, the normal action
of the serializer to escape special characters such as & and < is suppressed.

An xsl:value-of or xsl:text element may have a disable-output-escaping attribute; the allowed values are yes or no. The default is no; if
the value is yes, then every character in the text node generated by evaluating the xsl:value-of or xsl:text element SHOULD have the
disable-output property set.

Example: Disable Output Escaping

For example,

<xsl:text disable-output-escaping="yes"><</xsl:text>

should generate the single character <.

If output escaping is disabled for an xsl:value-of or xsl:text instruction evaluated when temporary output state is in effect, the request to
disable output escaping is ignored.

If output escaping is disabled for text within an element that would normally be output using a CDATA section, because the element is listed
in the cdata-section-elements, then the relevant text will not be included in a CDATA section. In effect, CDATA is treated as an alternative
escaping mechanism, which is disabled by the disable-output-escaping option.

Example: Interaction of Output Escaping and CDATA

For example, if <xsl:output cdata-section-elements="title"/> is specified, then the following instructions:

<title>
 <xsl:text disable-output-escaping="yes">This is not <hr/> good coding practice</xsl:text>
</title>

should generate the output:

<title><![CDATA[This is not]]><hr/><![CDATA[good coding practice]]></title>

The disable-output-escaping attribute may be used with the html output method as well as with the xml output method. The text output
method ignores the disable-output-escaping attribute, since it does not perform any output escaping.

A processor will only be able to disable output escaping if it controls how the final result tree is output. This might not always be the case.
For example, the result tree might be used as a source tree for another XSLT transformation instead of being output. It is implementation-
defined whether (and under what circumstances) disabling output escaping is supported.

[ERR XTRE1620] It is a recoverable dynamic error if an xsl:value-of or xsl:text instruction specifies that output escaping is to be disabled
and the implementation does not support this. The optional recovery action is to ignore the disable-output-escaping attribute.

[ERR XTRE1630] It is a recoverable dynamic error if an xsl:value-of or xsl:text instruction specifies that output escaping is to be disabled
when writing to a final result tree that is not being serialized. The optional recovery action is to ignore the disable-output-escaping attribute.

If output escaping is disabled for a character that is not representable in the encoding that the processor is using for output, the request to
disable output escaping is ignored in respect of that character.

Since disabling output escaping might not work with all implementations and can result in XML that is not well-formed, it SHOULD be used
only when there is no alternative.

Note:

The facility to define character maps for use during serialization, as described in 20.1 Character Maps, has been produced as an
alternative mechanism that can be used in many situations where disabling of output escaping was previously necessary, without the
same difficulties.

21 Conformance

A processor that claims conformance with this specification MUST claim conformance either as a basic XSLT processor or as a schema-
aware XSLT processor. The rules for these two conformance levels are defined in the following sections.

A processor that claims conformance at either of these two levels MAY additionally claim conformance with either or both of the following
optional features: the serialization feature, defined in 21.3 Serialization Feature, and the backwards compatibility feature, defined in 21.4
Backwards Compatibility Feature.

Note:

There is no conformance level or feature defined in this specification that requires implementation of the static typing features described
in [XPath 2.0]. An XSLT processor may provide a user option to invoke static typing, but to be conformant with this specification it must
allow a stylesheet to be processed with static typing disabled. The interaction of XSLT stylesheets with the static typing feature of XPath

Page 117 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

2.0 has not been specified, so the results of using static typing, if available, are implementation-defined.

An XSLT processor takes as its inputs a stylesheet and one or more XDM trees conforming to the data model defined in [Data Model]. It is
not REQUIRED that the processor supports any particular method of constructing XDM trees, but conformance can only be tested if it provides
a mechanism that enables XDM trees representing the stylesheet and primary source document to be constructed and supplied as input to
the processor.

The output of the XSLT processor consists of zero or more final result trees. It is not REQUIRED that the processor supports any particular
method of accessing a final result tree, but if it does not support the serialization module, conformance can only be tested if it provides some
alternative mechanism that enables access to the results of the transformation.

Certain facilities in this specification are described as producing implementation-defined results. A claim that asserts conformance with this
specification MUST be accompanied by documentation stating the effect of each implementation-defined feature. For convenience, a non-
normative checklist of implementation-defined features is provided at F Checklist of Implementation-Defined Features.

A conforming processor MUST signal any static error occurring in the stylesheet, or in any XPath expression, except where specified
otherwise either for individual error conditions or under the general provisions for forwards compatible behavior (see 3.9 Forwards-
Compatible Processing). After signaling such an error, the processor MAY continue for the purpose of signaling additional errors, but MUST
terminate abnormally without performing any transformation.

When a dynamic error occurs during the course of a transformation, the action depends on whether the error is classified as a recoverable
error. If a non-recoverable error occurs, the processor MUST signal it and MUST eventually terminate abnormally. If a recoverable error
occurs, the processor MUST either signal it and terminate abnormally, or it MUST take the defined recovery action and continue processing.

Some errors, notably type errors, MAY be treated as static errors or dynamic errors at the discretion of the processor.

A conforming processor MAY impose limits on the processing resources consumed by the processing of a stylesheet.

21.1 Basic XSLT Processor

[DEFINITION: A basic XSLT processor is an XSLT processor that implements all the mandatory requirements of this specification with the
exception of certain explicitly-identified constructs related to schema processing.] These constructs are listed below.

The mandatory requirements of this specification are taken to include the mandatory requirements of XPath 2.0, as described in [XPath 2.0].
A requirement is mandatory unless the specification includes wording (such as the use of the words SHOULD or MAY) that clearly indicates
that it is optional.

A basic XSLT processor MUST enforce the following restrictions. It MUST signal a static or dynamic error when the restriction is violated, as
described below.

[ERR XTSE1650] A basic XSLT processor MUST signal a static error if the stylesheet includes an xsl:import-schema declaration.

Note:

A processor that rejects an xsl:import-schema declaration will also reject any reference to a user-defined type defined in a schema, or
to a user-defined element or attribute declaration; it will not, however, reject references to the built-in types listed in 3.13 Built-in Types.

[ERR XTSE1660] A basic XSLT processor MUST signal a static error if the stylesheet includes an [xsl:]type attribute, or an [xsl:]validation
or default-validation attribute with a value other than strip.

A basic XSLT processor constrains the data model as follows:

Atomic values MUST belong to one of the atomic types listed in 3.13 Built-in Types (except as noted below).
An atomic value may also belong to an implementation-defined type that has been added to the context for use with extension
functions or extension instructions.
The set of constructor functions available are limited to those that construct values of the above atomic types.
The static context, which defines the full set of type names recognized by an XSLT processor and also by the XPath processor,
includes these atomic types, plus xs:anyType, xs:anySimpleType, xs:untyped, and xs:anyAtomicType.
Element nodes MUST be annotated with the type annotation xs:untyped, and attribute nodes with the type annotation
xs:untypedAtomic.

[ERR XTDE1665] A basic XSLT processor MUST raise a non-recoverable dynamic error if the input to the processor includes a node with a type
annotation other than xs:untyped or xs:untypedAtomic, or an atomic value of a type other than those which a basic XSLT processor
supports. This error will not arise if the input-type-annotations attribute is set to strip.

Note:

Although this is expressed in terms of a requirement to detect invalid input, an alternative approach is for a basic XSLT processor to
prevent this error condition occurring, by not providing any interfaces that would allow the situation to arise. A processor might, for
example, implement a mapping from the PSVI to the data model that loses all non-trivial type annotations; or it might not accept input
from a PSVI at all.

The phrase input to the processor is deliberately wide: it includes the tree containing the initial context node, trees passed as stylesheet
parameters, trees accessed using the document, doc FO, and collectionFO functions, and trees returned by extension functions and
extension instructions.

21.2 Schema-Aware XSLT Processor

[DEFINITION: A schema-aware XSLT processor is an XSLT processor that implements all the mandatory requirements of this specification,
including those features that a basic XSLT processor signals as an error. The mandatory requirements of this specification are taken to
include the mandatory requirements of XPath 2.0, as described in [XPath 2.0]. A requirement is mandatory unless the specification includes
wording (such as the use of the words SHOULD or MAY) that clearly indicates that it is optional.]

Page 118 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

21.3 Serialization Feature

[DEFINITION: A processor that claims conformance with the serialization feature MUST support the conversion of a final result tree to a
sequence of octets following the rules defined in 20 Serialization.] It MUST respect all the attributes of the xsl:output and xsl:character-map
declarations, and MUST provide all four output methods, xml, xhtml, html, and text. Where the specification uses words such as MUST and
REQUIRED, then it MUST serialize the result tree in precisely the way described; in other cases it MAY use an alternative, equivalent
representation.

A processor may claim conformance with the serialization feature whether or not it supports the setting disable-output-escaping="yes" on
xsl:text, or xsl:value-of.

A processor that does not claim conformance with the serialization feature MUST NOT signal an error merely because the stylesheet contains
xsl:output or xsl:character-map declarations, or serialization attributes on the xsl:result-document instruction. Such a processor MAY
check that these declarations and attributes have valid values, but is not REQUIRED to do so. Apart from optional validation, these
declarations SHOULD be ignored.

21.4 Backwards Compatibility Feature

[DEFINITION: A processor that claims conformance with the backwards compatibility feature MUST support the processing of stylesheet
instructions and XPath expressions with backwards compatible behavior, as defined in 3.8 Backwards-Compatible Processing.]

Note that a processor that does not claim conformance with the backwards compatibility feature MUST raise a non-recoverable dynamic error
if an instruction is evaluated containing an [xsl:]version attribute that invokes backwards compatible behavior [see ERR XTDE0160].

Note:

The reason this is a dynamic error rather than a static error is to allow stylesheets to contain conditional logic, following different paths
depending on whether the XSLT processor implements XSLT 1.0 or XSLT 2.0. The selection of which path to use can be controlled by
using the system-property function to test the xsl:version system property.

A processor that claims conformance with the backwards compatibility feature MUST permit the use of the namespace axis in XPath
expressions when backwards compatible behavior is enabled. In all other circumstances, support for the namespace axis is optional.

A References

A.1 Normative References

Data Model
XQuery 1.0 and XPath 2.0 Data Model (XDM), Norman Walsh, Mary Fernández, Ashok Malhotra, et. al., Editors. World Wide Web
Consortium, 23 Jan 2007. This version is http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/. The latest version is available
at http://www.w3.org/TR/xpath-datamodel/.

Functions and Operators
XQuery 1.0 and XPath 2.0 Functions and Operators, Ashok Malhotra, Jim Melton, and Norman Walsh, Editors. World Wide Web
Consortium, 23 Jan 2007. This version is http://www.w3.org/TR/2007/REC-xpath-functions-20070123/. The latest version is available
at http://www.w3.org/TR/xpath-functions/.

XML Information Set
XML Information Set (Second Edition), John Cowan and Richard Tobin, Editors. World Wide Web Consortium, 04 Feb 2004. This
version is http://www.w3.org/TR/2004/REC-xml-infoset-20040204. The latest version is available at http://www.w3.org/TR/xml-infoset.

ISO 3166-1
ISO (International Organization for Standardization) Codes for the representation of names of countries and their subdivisions - Part 1:
Country codes ISO 3166-1:1997.

ISO 8601
ISO (International Organization for Standardization) Data elements and interchange formats - Information interchange - Representation
of dates and times. ISO 8601:2000(E), Second edition, 2000-12-15.

XSLT and XQuery Serialization
XSLT 2.0 and XQuery 1.0 Serialization, Joanne Tong, Michael Kay, Norman Walsh, et. al., Editors. World Wide Web Consortium, 23
Jan 2007. This version is http://www.w3.org/TR/2007/REC-xslt-xquery-serialization-20070123/. The latest version is available at
http://www.w3.org/TR/xslt-xquery-serialization/.

XML 1.0
Extensible Markup Language (XML) 1.0 (Fourth Edition), Eve Maler, Jean Paoli, François Yergeau, et. al., Editors. World Wide Web
Consortium, 16 Aug 2006. This version is http://www.w3.org/TR/2006/REC-xml-20060816. The latest version is available at
http://www.w3.org/TR/xml.

XML 1.1
Extensible Markup Language (XML) 1.1 (Second Edition), Tim Bray, John Cowan, Jean Paoli, et. al., Editors. World Wide Web
Consortium, 16 Aug 2006. This version is http://www.w3.org/TR/2006/REC-xml11-20060816. The latest version is available at
http://www.w3.org/TR/xml11/.

XML Base
XML Base, Jonathan Marsh, Editor. World Wide Web Consortium, 27 Jun 2001. This version is http://www.w3.org/TR/2001/REC-
xmlbase-20010627/. The latest version is available at http://www.w3.org/TR/xmlbase/.

xml:id
xml:id Version 1.0, Norman Walsh, Daniel Veillard, and Jonathan Marsh, Editors. World Wide Web Consortium, 09 Sep 2005. This
version is http://www.w3.org/TR/2005/REC-xml-id-20050909/. The latest version is available at http://www.w3.org/TR/xml-id/.

Namespaces in XML 1.0
Namespaces in XML, Andrew Layman, Dave Hollander, and Tim Bray, Editors. World Wide Web Consortium, 14 Jan 1999. This
version is http://www.w3.org/TR/1999/REC-xml-names-19990114. The latest version is available at http://www.w3.org/TR/REC-xml-
names.

Namespaces in XML 1.1
Namespaces in XML 1.1 (Second Edition), Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin, Editors. World Wide Web
Consortium, 16 Aug 2006. This version is http://www.w3.org/TR/2006/REC-xml-names11-20060816. The latest version is available at
http://www.w3.org/TR/xml-names11/.

XML Schema Part 1
XML Schema Part 1: Structures Second Edition, Henry S. Thompson, David Beech, Noah Mendelsohn, and Murray Maloney, Editors.
World Wide Web Consortium, 28 Oct 2004. This version is http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/. The latest
version is available at http://www.w3.org/TR/xmlschema-1/.

XML Schema Part 2

Page 119 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

XML Schema Part 2: Datatypes Second Edition, Paul V. Biron and Ashok Malhotra, Editors. World Wide Web Consortium,
28 Oct 2004. This version is http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/. The latest version is available at
http://www.w3.org/TR/xmlschema-2/.

XPath 2.0
XML Path Language (XPath) 2.0, Don Chamberlin , Anders Berglund, Scott Boag, et. al., Editors. World Wide Web Consortium, 23 Jan
2007. This version is http://www.w3.org/TR/2007/REC-xpath20-20070123/. The latest version is available at
http://www.w3.org/TR/xpath20/.

A.2 Other References

Calendrical Calculations
Edward M. Reingold and Nachum Dershowitz. Calendrical Calculations Millennium edition (2nd Edition). Cambridge University Press,
ISBN 0 521 77752 6

DOM Level 2
Document Object Model (DOM) Level 2 Core Specification, Philippe Le Hégaret, Steve Byrne, Arnaud Le Hors, et. al., Editors. World
Wide Web Consortium, 13 Nov 2000. This version is http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113. The latest
version is available at http://www.w3.org/TR/DOM-Level-2-Core/.

RFC2119
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. IETF RFC 2119. See http://www.ietf.org/rfc/rfc2119.txt.

RFC2376
E. Whitehead, M. Murata. XML Media Types. IETF RFC 2376. See http://www.ietf.org/rfc/rfc2376.txt.

RFC3023
M. Murata, S. St.Laurent, and D. Cohn. XML Media Types. IETF RFC 3023. See http://www.ietf.org/rfc/rfc3023.txt. References to RFC
3023 should be taken to refer to any document that supersedes RFC 3023.

RFC3986
T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic Syntax. IETF RFC 3986. See
http://www.ietf.org/rfc/rfc3986.txt.

RFC3987
M. Duerst, M. Suignard. Internationalized Resource Identifiers (IRIs). IETF RFC 3987. See http://www.ietf.org/rfc/rfc3987.txt.

UNICODE TR10
Unicode Consortium. Unicode Technical Standard #10. Unicode Collation Algorithm. Unicode Technical Report. See
http://www.unicode.org/unicode/reports/tr10/.

XInclude
XML Inclusions (XInclude) Version 1.0 (Second Edition), David Orchard, Jonathan Marsh, and Daniel Veillard, Editors. World Wide
Web Consortium, 15 Nov 2006. This version is http://www.w3.org/TR/2006/REC-xinclude-20061115/. The latest version is available at
http://www.w3.org/TR/xinclude/.

XLink
XML Linking Language (XLink) Version 1.0, David Orchard, Eve Maler, and Steven DeRose, Editors. World Wide Web Consortium,
27 Jun 2001. This version is http://www.w3.org/TR/2001/REC-xlink-20010627/. The latest version is available at
http://www.w3.org/TR/xlink/.

XML Schema 1.0 and XML 1.1
World Wide Web Consortium. Processing XML 1.1 documents with XML Schema 1.0 processors. W3C Working Group Note 11 May
2005. See http://www.w3.org/TR/2005/NOTE-xml11schema10-20050511/

XML Stylesheet
Associating Style Sheets with XML documents, James Clark, Editor. World Wide Web Consortium, 29 Jun 1999. This version is
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629. The latest version is available at http://www.w3.org/TR/xml-stylesheet.

XPointer Framework
XPointer Framework, Paul Grosso, Jonathan Marsh, Eve Maler, and Norman Walsh, Editors. World Wide Web Consortium,
25 Mar 2003. This version is http://www.w3.org/TR/2003/REC-xptr-framework-20030325/. The latest version is available at
http://www.w3.org/TR/xptr-framework/.

Extensible Stylesheet Language (XSL)
Extensible Stylesheet Language (XSL) Version 1.1, Anders Berglund, Editor. World Wide Web Consortium, 05 Dec 2006. This version
is http://www.w3.org/TR/2006/REC-xsl11-20061205/. The latest version is available at http://www.w3.org/TR/xsl/.

XSLT 1.0
XSL Transformations (XSLT) Version 1.0, James Clark, Editor. World Wide Web Consortium, 16 Nov 1999. This version is
http://www.w3.org/TR/1999/REC-xslt-19991116. The latest version is available at http://www.w3.org/TR/xslt.

XSLT 2.0 Requirements
XSLT Requirements Version 2.0, Steve Muench and Mark Scardina, Editors. World Wide Web Consortium, 14 Feb 2001. This version
is http://www.w3.org/TR/2001/WD-xslt20req-20010214. The latest version is available at http://www.w3.org/TR/xslt20req.

B The XSLT Media Type

This appendix registers a new MIME media type, "application/xslt+xml".

This information is being submitted to the IESG (Internet Engineering Steering Group) for review, approval, and registration with IANA (the
Internet Assigned Numbers Authority).

B.1 Registration of MIME Media Type application/xslt+xml

MIME media type name:

application

MIME subtype name:

xslt+xml

Required parameters:

None.

Optional parameters:
charset

This parameter has identical semantics to the charset parameter of the application/xml media type as specified in [RFC3023].

Page 120 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Encoding considerations:

By virtue of XSLT content being XML, it has the same considerations when sent as "application/xslt+xml" as does XML. See RFC
3023, section 3.2.

Security considerations:

Several XSLT instructions may cause arbitrary URIs to be dereferenced. In this case, the security issues of [RFC3986], section 7,
should be considered.

In addition, because of the extensibility features for XSLT, it is possible that "application/xslt+xml" may describe content that has
security implications beyond those described here. However, if the processor follows only the normative semantics of this specification,
this content will be ignored. Only in the case where the processor recognizes and processes the additional content, or where further
processing of that content is dispatched to other processors, would security issues potentially arise. And in that case, they would fall
outside the domain of this registration document.

Interoperability considerations:

This specification describes processing semantics that dictate behavior that must be followed when dealing with, among other things,
unrecognized elements.

Because XSLT is extensible, conformant "application/xslt+xml" processors can expect that content received is well-formed XML, but
it cannot be guaranteed that the content is valid XSLT or that the processor will recognize all of the elements and attributes in the
document.

Published specification:

This media type registration is for XSLT stylesheet modules as described by the XSLT 2.0 specification, which is located at
http://www.w3.org/TR/xslt20/. It is also appropriate to use this media type with earlier and later versions of the XSLT language.

Applications which use this media type:

Existing XSLT 1.0 stylesheets are most often described using the unregistered media type "text/xsl".

There is no experimental, vendor specific, or personal tree predecessor to "application/xslt+xml", reflecting the fact that no
applications currently recognize it. This new type is being registered in order to allow for the expected deployment of XSLT 2.0 on the
World Wide Web, as a first class XML application.

Additional information:
Magic number(s):

There is no single initial octet sequence that is always present in XSLT documents.

File extension(s):

XSLT documents are most often identified with the extensions ".xsl" or ".xslt".

Macintosh File Type Code(s):

TEXT

Person & email address to contact for further information:

Norman Walsh, <Norman.Walsh@Sun.COM>.

Intended usage:

COMMON

Author/Change controller:

The XSLT specification is a work product of the World Wide Web Consortium's XSL Working Group. The W3C has change control over
these specifications.

B.2 Fragment Identifiers

For documents labeled as "application/xslt+xml", the fragment identifier notation is exactly that for "application/xml", as specified in RFC
3023.

C Glossary (Non-Normative)

QName

A QName is always written in the form (NCName ":")? NCName, that is, a local name optionally preceded by a namespace prefix. When
two QNames are compared, however, they are considered equal if the corresponding expanded-QNames are the same, as described
below.

URI Reference

Within this specification, the term URI Reference, unless otherwise stated, refers to a string in the lexical space of the xs:anyURI data
type as defined in [XML Schema Part 2].

XML namespace

Page 121 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The XML namespace, defined in [Namespaces in XML 1.0] as http://www.w3.org/XML/1998/namespace, is used for attributes such as
xml:lang, xml:space, and xml:id.

XPath 1.0 compatibility mode

The term XPath 1.0 compatibility mode is defined in Section 2.1.1 Static ContextXP. This is a setting in the static context of an XPath
expression; it has two values, true and false. When the value is set to true, the semantics of function calls and certain other
operations are adjusted to give a greater degree of backwards compatibility between XPath 2.0 and XPath 1.0.

XSLT element

An XSLT element is an element in the XSLT namespace whose syntax and semantics are defined in this specification.

XSLT instruction

An XSLT instruction is an XSLT element whose syntax summary in this specification contains the annotation <!-- category:
instruction -->.

XSLT namespace

The XSLT namespace has the URI http://www.w3.org/1999/XSL/Transform. It is used to identify elements, attributes, and other
names that have a special meaning defined in this specification.

alias

A stylesheet can use the xsl:namespace-alias element to declare that a literal namespace URI is being used as an alias for a target
namespace URI.

arity

The arity of a stylesheet function is the number of xsl:param elements in the function definition.

atomize

The term atomization is defined in Section 2.4.2 AtomizationXP. It is a process that takes as input a sequence of nodes and atomic
values, and returns a sequence of atomic values, in which the nodes are replaced by their typed values as defined in [Data Model].

attribute set

The xsl:attribute-set element defines a named attribute set: that is, a collection of attribute definitions that can be used repeatedly
on different constructed elements.

attribute value template

In an attribute that is designated as an attribute value template, such as an attribute of a literal result element, an expression can be
used by surrounding the expression with curly brackets ({})

backwards compatibility feature

A processor that claims conformance with the backwards compatibility feature MUST support the processing of stylesheet
instructions and XPath expressions with backwards compatible behavior, as defined in 3.8 Backwards-Compatible Processing.

backwards compatible behavior

An element enables backwards-compatible behavior for itself, its attributes, its descendants and their attributes if it has an [xsl:]
version attribute (see 3.5 Standard Attributes) whose value is less than 2.0.

base output URI

The base output URI is a URI to be used as the base URI when resolving a relative URI allocated to a final result tree. If the
transformation generates more than one final result tree, then typically each one will be allocated a URI relative to this base URI.

basic XSLT processor

A basic XSLT processor is an XSLT processor that implements all the mandatory requirements of this specification with the exception
of certain explicitly-identified constructs related to schema processing.

character map

A character map allows a specific character appearing in a text or attribute node in the final result tree to be substituted by a specified
string of characters during serialization.

circularity

A circularity is said to exist if a construct such as a global variable, an attribute set, or a key is defined in terms of itself. For example,
if the expression or sequence constructor specifying the value of a global variable X references a global variable Y, then the value for Y
MUST be computed before the value of X. A circularity exists if it is impossible to do this for all global variable definitions.

collation

Facilities in XSLT 2.0 and XPath 2.0 that require strings to be ordered rely on the concept of a named collation. A collation is a set of
rules that determine whether two strings are equal, and if not, which of them is to be sorted before the other.

context item

Page 122 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

The context item is the item currently being processed. An item (see [Data Model]) is either an atomic value (such as an integer, date,
or string), or a node. The context item is initially set to the initial context node supplied when the transformation is invoked (see 2.3
Initiating a Transformation). It changes whenever instructions such as xsl:apply-templates and xsl:for-each are used to process a
sequence of items; each item in such a sequence becomes the context item while that item is being processed.

context node

If the context item is a node (as distinct from an atomic value such as an integer), then it is also referred to as the context node. The
context node is not an independent variable, it changes whenever the context item changes. When the context item is an atomic value,
there is no context node.

context position

The context position is the position of the context item within the sequence of items currently being processed. It changes whenever
the context item changes. When an instruction such as xsl:apply-templates or xsl:for-each is used to process a sequence of items,
the first item in the sequence is processed with a context position of 1, the second item with a context position of 2, and so on.

context size

The context size is the number of items in the sequence of items currently being processed. It changes whenever instructions such as
xsl:apply-templates and xsl:for-each are used to process a sequence of items; during the processing of each one of those items,
the context size is set to the count of the number of items in the sequence (or equivalently, the position of the last item in the
sequence).

core function

The term core function means a function that is specified in [Functions and Operators] and that is in the standard function
namespace.

current captured substrings

While the xsl:matching-substring instruction is active, a set of current captured substrings is available, corresponding to the
parenthesized sub-expressions of the regular expression.

current group

The evaluation context for XPath expressions includes a component called the current group, which is a sequence. The current group
is the collection of related items that are processed collectively in one iteration of the xsl:for-each-group element.

current grouping key

The evaluation context for XPath expressions includes a component called the current grouping key, which is an atomic value. The
current grouping key is the grouping key shared in common by all the items within the current group.

current mode

At any point in the processing of a stylesheet, there is a current mode. When the transformation is initiated, the current mode is the
default mode, unless a different initial mode has been supplied, as described in 2.3 Initiating a Transformation. Whenever an
xsl:apply-templates instruction is evaluated, the current mode becomes the mode selected by this instruction.

current template rule

At any point in the processing of a stylesheet, there may be a current template rule. Whenever a template rule is chosen as a result
of evaluating xsl:apply-templates, xsl:apply-imports, or xsl:next-match, the template rule becomes the current template rule for
the evaluation of the rule's sequence constructor. When an xsl:for-each, xsl:for-each-group, or xsl:analyze-string instruction is
evaluated, or when evaluating a sequence constructor contained in an xsl:sort or xsl:key element, or when a stylesheet function is
called (see 10.3 Stylesheet Functions), the current template rule becomes null for the evaluation of that instruction or function.

date formatting function

The three functions format-date, format-time, and format-dateTime are referred to collectively as the date formatting functions.

decimal format

All the xsl:decimal-format declarations in a stylesheet that share the same name are grouped into a named decimal format; those
that have no name are grouped into a single unnamed decimal format.

declaration

Top-level elements fall into two categories: declarations, and user-defined data elements. Top-level elements whose names are in the
XSLT namespace are declarations. Top-level elements in any other namespace are user-defined data elements (see 3.6.2 User-
defined Data Elements)

declaration order

The declarations within a stylesheet level have a total ordering known as declaration order. The order of declarations within a
stylesheet level is the same as the document order that would result if each stylesheet module were inserted textually in place of the
xsl:include element that references it.

default collation

In this specification the term default collation means the collation that is used by XPath operators such as eq and lt appearing in
XPath expressions within the stylesheet.

default mode

Page 123 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

There is always a default mode available. The default mode is an unnamed mode, and it is used when no mode attribute is specified
on an xsl:apply-templates instruction.

default priority

If no priority attribute is specified on the xsl:template element, a default priority is computed, based on the syntax of the pattern
supplied in the match attribute.

defining element

A string in the form of a lexical QName may occur as the value of an attribute node in a stylesheet module, or within an XPath
expression contained in such an attribute node, or as the result of evaluating an XPath expression contained in such an attribute node.
The element containing this attribute node is referred to as the defining element of the QName.

deprecated

Some constructs defined in this specification are described as being deprecated. The use of this term implies that stylesheet authors
SHOULD NOT use the construct, and that the construct may be removed in a later version of this specification.

dynamic error

An error that is not detected until a source document is being transformed is referred to as a dynamic error.

effective value

The result of evaluating an attribute value template is referred to as the effective value of the attribute.

embedded stylesheet module

An embedded stylesheet module is a stylesheet module that is embedded within another XML document, typically the source
document that is being transformed.

expanded-QName

An expanded-QName contains a pair of values, namely a local name and an optional namespace URI. It may also contain a
namespace prefix. Two expanded-QNames are equal if the namespace URIs are the same (or both absent) and the local names are
the same. The prefix plays no part in the comparison, but is used only if the expanded-QName needs to be converted back to a string.

expression

Within this specification, the term XPath expression, or simply expression, means a string that matches the production Expr XP
defined in [XPath 2.0].

extension attribute

An element from the XSLT namespace may have any attribute not from the XSLT namespace, provided that the expanded-QName
(see [XPath 2.0]) of the attribute has a non-null namespace URI. These attributes are referred to as extension attributes.

extension function

An extension function is a function that is available for use within an XPath expression, other than a core function defined in
[Functions and Operators], an additional function defined in this XSLT specification, a constructor function named after an atomic type,
or a stylesheet function defined using an xsl:function declaration.

extension instruction

An extension instruction is an element within a sequence constructor that is in a namespace (not the XSLT namespace) designated
as an extension namespace.

extension namespace

The extension instruction mechanism allows namespaces to be designated as extension namespaces. When a namespace is
designated as an extension namespace and an element with a name from that namespace occurs in a sequence constructor, then the
element is treated as an instruction rather than as a literal result element.

final output state

The first of the two output states is called final output state. This state applies when instructions are writing to a final result tree.

final result tree

A final result tree is a result tree that forms part of the final output of a transformation. Once created, the contents of a final result tree
are not accessible within the stylesheet itself.

focus

When a sequence constructor is evaluated, the processor keeps track of which items are being processed by means of a set of implicit
variables referred to collectively as the focus.

forwards-compatible behavior

An element enables forwards-compatible behavior for itself, its attributes, its descendants and their attributes if it has an [xsl:]
version attribute (see 3.5 Standard Attributes) whose value is greater than 2.0.

function conversion rules

Page 124 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Except where otherwise indicated, the actual value of an expression is converted to the required type using the function conversion
rules. These are the rules defined in [XPath 2.0] for converting the supplied argument of a function call to the required type of that
argument, as defined in the function signature. The relevant rules are those that apply when XPath 1.0 compatibility mode is set to
false.

function parameter

An xsl:param element may appear as a child of an xsl:function element, before any non-xsl:param children of that element. Such a
parameter is known as a function parameter. A function parameter is a local variable with the additional property that its value can be
set when the function is called, using a function call in an XPath expression.

global variable

A top-level variable-binding element declares a global variable that is visible everywhere (except where it is shadowed by another
binding).

group

The xsl:for-each-group instruction allocates the items in an input sequence into groups of items (that is, it establishes a collection of
sequences) based either on common values of a grouping key, or on a pattern that the initial or final node in a group must match.

grouping key

If either of the group-by attribute or group-adjacent attributes is present, then grouping keys are calculated for each item in the
population. The grouping keys are the items in the sequence obtained by evaluating the expression contained in the group-by attribute
or group-adjacent attribute, atomizing the result, and then casting an xs:untypedAtomic value to xs:string.

implementation

A specific product that performs the functions of an XSLT processor is referred to as an implementation

implementation-defined

In this specification, the term implementation-defined refers to a feature where the implementation is allowed some flexibility, and
where the choices made by the implementation MUST be described in documentation that accompanies any conformance claim.

implementation-dependent

The term implementation-dependent refers to a feature where the behavior MAY vary from one implementation to another, and where
the vendor is not expected to provide a full specification of the behavior.

import precedence

A declaration D in the stylesheet is defined to have lower import precedence than another declaration E if the stylesheet level
containing D would be visited before the stylesheet level containing E in a post-order traversal of the import tree (that is, a traversal of
the import tree in which a stylesheet level is visited after its children). Two declarations within the same stylesheet level have the same
import precedence.

import tree

The stylesheet levels making up a stylesheet are treated as forming an import tree. In the import tree, each stylesheet level has one
child for each xsl:import declaration that it contains.

in-scope schema component

The schema components that may be referenced by name in a stylesheet are referred to as the in-scope schema components. This
set is the same throughout all the modules of a stylesheet.

initial context node

A node that acts as the initial context node for the transformation. This node is accessible within the stylesheet as the initial value of
the XPath expressions . (dot) and self::node(), as described in 5.4.3.1 Maintaining Position: the Focus

initial item

For each group, the item within the group that is first in population order is known as the initial item of the group.

initial sequence

The sequence to be sorted is referred to as the initial sequence.

initial template

The transformation is performed by evaluating an initial template. If a named template is supplied when the transformation is initiated,
then this is the initial template; otherwise, the initial template is the template rule selected according to the rules of the xsl:apply-
templates instruction for processing the initial context node in the initial mode.

instruction

An instruction is either an XSLT instruction or an extension instruction.

key

A key is defined as a set of xsl:key declarations in the stylesheet that share the same name.

Page 125 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

key specifier

The expression in the use attribute and the sequence constructor within an xsl:key declaration are referred to collectively as the key
specifier. The key specifier determines the values that may be used to find a node using this key.

lexical QName

A lexical QName is a string representing a QName in the form (NCName ":")? NCName, that is, a local name optionally preceded by a
namespace prefix.

literal namespace URI

A namespace URI in the stylesheet tree that is being used to specify a namespace URI in the result tree is called a literal namespace
URI.

literal result element

In a sequence constructor, an element in the stylesheet that does not belong to the XSLT namespace and that is not an extension
instruction (see 18.2 Extension Instructions) is classified as a literal result element.

local variable

As well as being allowed as declaration elements, the xsl:variable element is also allowed in sequence constructors. Such a variable
is known as a local variable.

mode

Modes allow a node in a source tree to be processed multiple times, each time producing a different result. They also allow different
sets of template rules to be active when processing different trees, for example when processing documents loaded using the document
function (see 16.1 Multiple Source Documents) or when processing temporary trees.

named template

Templates can be invoked by name. An xsl:template element with a name attribute defines a named template.

namespace fixup

The rules for the individual XSLT instructions that construct a result tree (see 11 Creating Nodes and Sequences) prescribe some of
the situations in which namespace nodes are written to the tree. These rules, however, are not sufficient to ensure that the prescribed
constraints are always satisfied. The XSLT processor MUST therefore add additional namespace nodes to satisfy these constraints.
This process is referred to as namespace fixup.

non-recoverable dynamic error

A dynamic error that is not recoverable is referred to as a non-recoverable dynamic error. When a non-recoverable dynamic error
occurs, the processor MUST signal the error, and the transformation fails.

optional recovery action

If an implementation chooses to recover from a recoverable dynamic error, it MUST take the optional recovery action defined for that
error condition in this specification.

order of first appearance

There is an ordering among groups referred to as the order of first appearance. A group G is defined to precede a group H in order of
first appearance if the initial item of G precedes the initial item of H in population order. If two groups G and H have the same initial
item (because the item is in both groups) then G precedes H if the grouping key of G precedes the grouping key of H in the sequence
that results from evaluating the group-by expression of this initial item.

output definition

All the xsl:output declarations in a stylesheet that share the same name are grouped into a named output definition; those that have
no name are grouped into a single unnamed output definition.

output state

Each instruction in the stylesheet is evaluated in one of two possible output states: final output state or temporary output state

parameter

The xsl:param element declares a parameter, which may be a stylesheet parameter, a template parameter, or a function parameter. A
parameter is a variable with the additional property that its value can be set by the caller when the stylesheet, the template, or the
function is invoked.

pattern

A pattern specifies a set of conditions on a node. A node that satisfies the conditions matches the pattern; a node that does not satisfy
the conditions does not match the pattern. The syntax for patterns is a subset of the syntax for expressions.

picture string

The formatting of a number is controlled by a picture string. The picture string is a sequence of characters, in which the characters
assigned to the variables decimal-separator-sign, grouping-sign, zero-digit-sign, digit-sign and pattern-separator-sign are classified as
active characters, and all other characters (including the percent-sign and per-mille-sign) are classified as passive characters.

Page 126 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

place marker

The xsl:number instruction performs two tasks: firstly, determining a place marker (this is a sequence of integers, to allow for
hierarchic numbering schemes such as 1.12.2 or 3(c)ii), and secondly, formatting the place marker for output as a text node in the
result sequence.

population

The sequence of items to be grouped, which is referred to as the population, is determined by evaluating the XPath expression
contained in the select attribute.

population order

The population is treated as a sequence; the order of items in this sequence is referred to as population order

principal stylesheet module

A stylesheet may consist of several stylesheet modules, contained in different XML documents. For a given transformation, one of
these functions as the principal stylesheet module. The complete stylesheet is assembled by finding the stylesheet modules
referenced directly or indirectly from the principal stylesheet module using xsl:include and xsl:import elements: see 3.10.2
Stylesheet Inclusion and 3.10.3 Stylesheet Import.

processing order

There is another ordering among groups referred to as processing order. If group R precedes group S in processing order, then in the
result sequence returned by the xsl:for-each-group instruction the items generated by processing group R will precede the items
generated by processing group S.

processor

The software responsible for transforming source trees into result trees using an XSLT stylesheet is referred to as the processor. This
is sometimes expanded to XSLT processor to avoid any confusion with other processors, for example an XML processor.

recoverable error

Some dynamic errors are classed as recoverable errors. When a recoverable error occurs, this specification allows the processor
either to signal the error (by reporting the error condition and terminating execution) or to take a defined recovery action and continue
processing.

required type

The context within a stylesheet where an XPath expression appears may specify the required type of the expression. The required
type indicates the type of the value that the expression is expected to return.

reserved namespace

The XSLT namespace, together with certain other namespaces recognized by an XSLT processor, are classified as reserved
namespaces and MUST be used only as specified in this and related specifications.

result tree

The term result tree is used to refer to any tree constructed by instructions in the stylesheet. A result tree is either a final result tree or
a temporary tree.

schema component

Type definitions and element and attribute declarations are referred to collectively as schema components.

schema instance namespace

The schema instance namespace http://www.w3.org/2001/XMLSchema-instance is used as defined in [XML Schema Part 1]

schema namespace

The schema namespace http://www.w3.org/2001/XMLSchema is used as defined in [XML Schema Part 1]

schema-aware XSLT processor

A schema-aware XSLT processor is an XSLT processor that implements all the mandatory requirements of this specification,
including those features that a basic XSLT processor signals as an error. The mandatory requirements of this specification are taken to
include the mandatory requirements of XPath 2.0, as described in [XPath 2.0]. A requirement is mandatory unless the specification
includes wording (such as the use of the words SHOULD or MAY) that clearly indicates that it is optional.

sequence constructor

A sequence constructor is a sequence of zero or more sibling nodes in the stylesheet that can be evaluated to return a sequence of
nodes and atomic values. The way that the resulting sequence is used depends on the containing instruction.

serialization

A frequent requirement is to output a final result tree as an XML document (or in other formats such as HTML). This process is referred
to as serialization.

serialization error

Page 127 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

If a transformation has successfully produced a final result tree, it is still possible that errors may occur in serializing the result tree. For
example, it may be impossible to serialize the result tree using the encoding selected by the user. Such an error is referred to as a
serialization error.

serialization feature

A processor that claims conformance with the serialization feature MUST support the conversion of a final result tree to a sequence of
octets following the rules defined in 20 Serialization.

shadows

A binding shadows another binding if the binding occurs at a point where the other binding is visible, and the bindings have the same
name.

simplified stylesheet module

A simplified stylesheet module is a tree, or part of a tree, consisting of a literal result element together with its descendant nodes and
associated attributes and namespaces. This element is not itself in the XSLT namespace, but it MUST have an xsl:version attribute,
which implies that it MUST have a namespace node that declares a binding for the XSLT namespace. For further details see 3.7
Simplified Stylesheet Modules.

singleton focus

A singleton focus based on a node N has the context item (and therefore the context node) set to N, and the context position and
context size both set to 1 (one).

sort key component

Within a sort key specification, each xsl:sort element defines one sort key component.

sort key specification

A sort key specification is a sequence of one or more adjacent xsl:sort elements which together define rules for sorting the items in
an input sequence to form a sorted sequence.

sort key value

For each item in the initial sequence, a value is computed for each sort key component within the sort key specification. The value
computed for an item by using the Nth sort key component is referred to as the Nth sort key value of that item.

sorted sequence

The sequence after sorting as defined by the xsl:sort elements is referred to as the sorted sequence.

source tree

The term source tree means any tree provided as input to the transformation. This includes the document containing the initial context
node if any, documents containing nodes supplied as the values of stylesheet parameters, documents obtained from the results of
functions such as document, doc FO, and collectionFO, and documents returned by extension functions or extension instructions. In the
context of a particular XSLT instruction, the term source tree means any tree provided as input to that instruction; this may be a
source tree of the transformation as a whole, or it may be a temporary tree produced during the course of the transformation.

stable

A sort key specification is said to be stable if its first xsl:sort element has no stable attribute, or has a stable attribute whose
effective value is yes.

standalone stylesheet module

A standalone stylesheet module is a stylesheet module that comprises the whole of an XML document.

standard attributes

There are a number of standard attributes that may appear on any XSLT element: specifically version, exclude-result-prefixes,
extension-element-prefixes, xpath-default-namespace, default-collation, and use-when.

standard function namespace

The standard function namespace http://www.w3.org/2005/xpath-functions is used for functions in the function library defined in
[Functions and Operators] and standard functions defined in this specification.

standard stylesheet module

A standard stylesheet module is a tree, or part of a tree, consisting of an xsl:stylesheet or xsl:transform element (see 3.6
Stylesheet Element) together with its descendant nodes and associated attributes and namespaces.

static error

An error that is detected by examining a stylesheet before execution starts (that is, before the source document and values of
stylesheet parameters are available) is referred to as a static error.

string value

The term string value is defined in Section 5.13 string-value AccessorDM. Every node has a string value. For example, the string value

Page 128 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

of an element is the concatenation of the string values of all its descendant text nodes.

stylesheet

A transformation in the XSLT language is expressed in the form of a stylesheet, whose syntax is well-formed XML [XML 1.0]
conforming to the Namespaces in XML Recommendation [Namespaces in XML 1.0].

stylesheet function

An xsl:function declaration declares the name, parameters, and implementation of a stylesheet function that can be called from any
XPath expression within the stylesheet.

stylesheet level

A stylesheet level is a collection of stylesheet modules connected using xsl:include declarations: specifically, two stylesheet
modules A and B are part of the same stylesheet level if one of them includes the other by means of an xsl:include declaration, or if
there is a third stylesheet module C that is in the same stylesheet level as both A and B.

stylesheet module

A stylesheet consists of one or more stylesheet modules, each one forming all or part of an XML document.

stylesheet parameter

A top-level xsl:param element declares a stylesheet parameter. A stylesheet parameter is a global variable with the additional
property that its value can be supplied by the caller when a transformation is initiated.

supplied value

The value of the variable is computed using the expression given in the select attribute or the contained sequence constructor, as
described in 9.3 Values of Variables and Parameters. This value is referred to as the supplied value of the variable.

target namespace URI

The namespace URI that is to be used in the result tree as a substitute for a literal namespace URI is called the target namespace
URI.

template

An xsl:template declaration defines a template, which contains a sequence constructor for creating nodes and/or atomic values. A
template can serve either as a template rule, invoked by matching nodes against a pattern, or as a named template, invoked explicitly
by name. It is also possible for the same template to serve in both capacities.

template parameter

An xsl:param element may appear as a child of an xsl:template element, before any non-xsl:param children of that element. Such a
parameter is known as a template parameter. A template parameter is a local variable with the additional property that its value can
be set when the template is called, using any of the instructions xsl:call-template, xsl:apply-templates, xsl:apply-imports, or
xsl:next-match.

template rule

A stylesheet contains a set of template rules (see 6 Template Rules). A template rule has three parts: a pattern that is matched
against nodes, a (possibly empty) set of template parameters, and a sequence constructor that is evaluated to produce a sequence of
items.

temporary output state

The second of the two output states is called temporary output state. This state applies when instructions are writing to a temporary
tree or any other non-final destination.

temporary tree

The term temporary tree means any tree that is neither a source tree nor a final result tree.

top-level

An element occurring as a child of an xsl:stylesheet element is called a top-level element.

tunnel parameter

A parameter passed to a template may be defined as a tunnel parameter. Tunnel parameters have the property that they are
automatically passed on by the called template to any further templates that it calls, and so on recursively.

type annotation

The term type annotation is used in this specification to refer to the value returned by the dm:type-name accessor of a node: see
Section 5.14 type-name AccessorDM.

type errors

Certain errors are classified as type errors. A type error occurs when the value supplied as input to an operation is of the wrong type
for that operation, for example when an integer is supplied to an operation that expects a node.

Page 129 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

typed value

The term typed value is defined in Section 5.15 typed-value AccessorDM. Every node except an element defined in the schema with
element-only content has a typed value. For example, the typed value of an attribute of type xs:IDREFS is a sequence of zero or more
xs:IDREF values.

user-defined data element

In addition to declarations, the xsl:stylesheet element may contain any element not from the XSLT namespace, provided that the
expanded-QName of the element has a non-null namespace URI. Such elements are referred to as user-defined data elements.

value

A variable is a binding between a name and a value. The value of a variable is any sequence (of nodes and/or atomic values), as
defined in [Data Model].

variable

The xsl:variable element declares a variable, which may be a global variable or a local variable.

variable-binding element

The two elements xsl:variable and xsl:param are referred to as variable-binding elements

whitespace text node

A whitespace text node is a text node whose content consists entirely of whitespace characters (that is, #x09, #x0A, #x0D, or #x20).

D Element Syntax Summary (Non-Normative)

The syntax of each XSLT element is summarized below, together with the context in the stylesheet where the element may appear. Some
elements (specifically, instructions) are allowed as a child of any element that is allowed to contain a sequence constructor. These elements
are:

Literal result elements
Extension instructions, if so defined

xsl:analyze-string

xsl:apply-imports

xsl:apply-templates

Category: instruction

Model:

<xsl:analyze-string
 select = expression
 regex = { string }
 flags? = { string }>
 <!-- Content: (xsl:matching-substring?, xsl:non-matching-substring?, xsl:fallback*) -->
</xsl:analyze-string>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: instruction

Model:

<xsl:apply-imports>
 <!-- Content: xsl:with-param* -->
</xsl:apply-imports>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: instruction

Model:

<xsl:apply-templates
 select? = expression
 mode? = token>
 <!-- Content: (xsl:sort | xsl:with-param)* -->
</xsl:apply-templates>

Permitted parent elements:

any XSLT element whose content model is sequence constructor

Page 130 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:attribute

xsl:attribute-set

xsl:call-template

xsl:character-map

xsl:choose

any literal result element

Category: instruction

Model:

<xsl:attribute
 name = { qname }
 namespace? = { uri-reference }
 select? = expression
 separator? = { string }
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip">
 <!-- Content: sequence-constructor -->
</xsl:attribute>

Permitted parent elements:

xsl:attribute-set
any XSLT element whose content model is sequence constructor
any literal result element

Category: declaration

Model:

<xsl:attribute-set
 name = qname
 use-attribute-sets? = qnames>
 <!-- Content: xsl:attribute* -->
</xsl:attribute-set>

Permitted parent elements:

xsl:stylesheet
xsl:transform

Category: instruction

Model:

<xsl:call-template
 name = qname>
 <!-- Content: xsl:with-param* -->
</xsl:call-template>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: declaration

Model:

<xsl:character-map
 name = qname
 use-character-maps? = qnames>
 <!-- Content: (xsl:output-character*) -->
</xsl:character-map>

Permitted parent elements:

xsl:stylesheet
xsl:transform

Category: instruction

Model:

<xsl:choose>
 <!-- Content: (xsl:when+, xsl:otherwise?) -->
</xsl:choose>

Permitted parent elements:

any XSLT element whose content model is sequence constructor

Page 131 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:comment

xsl:copy

xsl:copy-of

xsl:decimal-format

xsl:document

any literal result element

Category: instruction

Model:

<xsl:comment
 select? = expression>
 <!-- Content: sequence-constructor -->
</xsl:comment>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: instruction

Model:

<xsl:copy
 copy-namespaces? = "yes" | "no"
 inherit-namespaces? = "yes" | "no"
 use-attribute-sets? = qnames
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip">
 <!-- Content: sequence-constructor -->
</xsl:copy>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: instruction

Model:

<xsl:copy-of
 select = expression
 copy-namespaces? = "yes" | "no"
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip" />

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: declaration

Model:

<xsl:decimal-format
 name? = qname
 decimal-separator? = char
 grouping-separator? = char
 infinity? = string
 minus-sign? = char
 NaN? = string
 percent? = char
 per-mille? = char
 zero-digit? = char
 digit? = char
 pattern-separator? = char />

Permitted parent elements:

xsl:stylesheet
xsl:transform

Category: instruction

Model:

<xsl:document
 validation? = "strict" | "lax" | "preserve" | "strip"
 type? = qname>

Page 132 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:element

xsl:fallback

xsl:for-each

xsl:for-each-group

xsl:function

 <!-- Content: sequence-constructor -->
</xsl:document>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: instruction

Model:

<xsl:element
 name = { qname }
 namespace? = { uri-reference }
 inherit-namespaces? = "yes" | "no"
 use-attribute-sets? = qnames
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip">
 <!-- Content: sequence-constructor -->
</xsl:element>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: instruction

Model:

<xsl:fallback>
 <!-- Content: sequence-constructor -->
</xsl:fallback>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: instruction

Model:

<xsl:for-each
 select = expression>
 <!-- Content: (xsl:sort*, sequence-constructor) -->
</xsl:for-each>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: instruction

Model:

<xsl:for-each-group
 select = expression
 group-by? = expression
 group-adjacent? = expression
 group-starting-with? = pattern
 group-ending-with? = pattern
 collation? = { uri }>
 <!-- Content: (xsl:sort*, sequence-constructor) -->
</xsl:for-each-group>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: declaration

Model:

<xsl:function

Page 133 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:if

xsl:import

xsl:import-schema

xsl:include

xsl:key

 name = qname
 as? = sequence-type
 override? = "yes" | "no">
 <!-- Content: (xsl:param*, sequence-constructor) -->
</xsl:function>

Permitted parent elements:

xsl:stylesheet
xsl:transform

Category: instruction

Model:

<xsl:if
 test = expression>
 <!-- Content: sequence-constructor -->
</xsl:if>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: declaration

Model:

<xsl:import
 href = uri-reference />

Permitted parent elements:

xsl:stylesheet
xsl:transform

Category: declaration

Model:

<xsl:import-schema
 namespace? = uri-reference
 schema-location? = uri-reference>
 <!-- Content: xs:schema? -->
</xsl:import-schema>

Permitted parent elements:

xsl:stylesheet
xsl:transform

Category: declaration

Model:

<xsl:include
 href = uri-reference />

Permitted parent elements:

xsl:stylesheet
xsl:transform

Category: declaration

Model:

<xsl:key
 name = qname
 match = pattern
 use? = expression
 collation? = uri>
 <!-- Content: sequence-constructor -->
</xsl:key>

Permitted parent elements:

Page 134 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:matching-substring

xsl:message

xsl:namespace

xsl:namespace-alias

xsl:next-match

xsl:non-matching-substring

xsl:stylesheet
xsl:transform

Model:

<xsl:matching-substring>
 <!-- Content: sequence-constructor -->
</xsl:matching-substring>

Permitted parent elements:

xsl:analyze-string

Category: instruction

Model:

<xsl:message
 select? = expression
 terminate? = { "yes" | "no" }>
 <!-- Content: sequence-constructor -->
</xsl:message>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element
xsl:function

Category: instruction

Model:

<xsl:namespace
 name = { ncname }
 select? = expression>
 <!-- Content: sequence-constructor -->
</xsl:namespace>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: declaration

Model:

<xsl:namespace-alias
 stylesheet-prefix = prefix | "#default"
 result-prefix = prefix | "#default" />

Permitted parent elements:

xsl:stylesheet
xsl:transform

Category: instruction

Model:

<xsl:next-match>
 <!-- Content: (xsl:with-param | xsl:fallback)* -->
</xsl:next-match>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Model:

<xsl:non-matching-substring>

Page 135 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:number

xsl:otherwise

xsl:output

xsl:output-character

xsl:param

 <!-- Content: sequence-constructor -->
</xsl:non-matching-substring>

Permitted parent elements:

xsl:analyze-string

Category: instruction

Model:

<xsl:number
 value? = expression
 select? = expression
 level? = "single" | "multiple" | "any"
 count? = pattern
 from? = pattern
 format? = { string }
 lang? = { nmtoken }
 letter-value? = { "alphabetic" | "traditional" }
 ordinal? = { string }
 grouping-separator? = { char }
 grouping-size? = { number } />

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Model:

<xsl:otherwise>
 <!-- Content: sequence-constructor -->
</xsl:otherwise>

Permitted parent elements:

xsl:choose

Category: declaration

Model:

<xsl:output
 name? = qname
 method? = "xml" | "html" | "xhtml" | "text" | qname-but-not-ncname
 byte-order-mark? = "yes" | "no"
 cdata-section-elements? = qnames
 doctype-public? = string
 doctype-system? = string
 encoding? = string
 escape-uri-attributes? = "yes" | "no"
 include-content-type? = "yes" | "no"
 indent? = "yes" | "no"
 media-type? = string
 normalization-form? = "NFC" | "NFD" | "NFKC" | "NFKD" | "fully-normalized" | "none" | nmtoken
 omit-xml-declaration? = "yes" | "no"
 standalone? = "yes" | "no" | "omit"
 undeclare-prefixes? = "yes" | "no"
 use-character-maps? = qnames
 version? = nmtoken />

Permitted parent elements:

xsl:stylesheet
xsl:transform

Model:

<xsl:output-character
 character = char
 string = string />

Permitted parent elements:

xsl:character-map

Category: declaration

Page 136 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:perform-sort

xsl:preserve-space

xsl:processing-instruction

xsl:result-document

Model:

<xsl:param
 name = qname
 select? = expression
 as? = sequence-type
 required? = "yes" | "no"
 tunnel? = "yes" | "no">
 <!-- Content: sequence-constructor -->
</xsl:param>

Permitted parent elements:

xsl:stylesheet
xsl:transform
xsl:function
xsl:template

Category: instruction

Model:

<xsl:perform-sort
 select? = expression>
 <!-- Content: (xsl:sort+, sequence-constructor) -->
</xsl:perform-sort>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: declaration

Model:

<xsl:preserve-space
 elements = tokens />

Permitted parent elements:

xsl:stylesheet
xsl:transform

Category: instruction

Model:

<xsl:processing-instruction
 name = { ncname }
 select? = expression>
 <!-- Content: sequence-constructor -->
</xsl:processing-instruction>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: instruction

Model:

<xsl:result-document
 format? = { qname }
 href? = { uri-reference }
 validation? = "strict" | "lax" | "preserve" | "strip"
 type? = qname
 method? = { "xml" | "html" | "xhtml" | "text" | qname-but-not-ncname }
 byte-order-mark? = { "yes" | "no" }
 cdata-section-elements? = { qnames }
 doctype-public? = { string }
 doctype-system? = { string }
 encoding? = { string }
 escape-uri-attributes? = { "yes" | "no" }
 include-content-type? = { "yes" | "no" }
 indent? = { "yes" | "no" }
 media-type? = { string }
 normalization-form? = { "NFC" | "NFD" | "NFKC" | "NFKD" | "fully-normalized" | "none" | nmtoken }
 omit-xml-declaration? = { "yes" | "no" }
 standalone? = { "yes" | "no" | "omit" }
 undeclare-prefixes? = { "yes" | "no" }

Page 137 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:sequence

xsl:sort

xsl:strip-space

xsl:stylesheet

xsl:template

 use-character-maps? = qnames
 output-version? = { nmtoken }>
 <!-- Content: sequence-constructor -->
</xsl:result-document>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: instruction

Model:

<xsl:sequence
 select = expression>
 <!-- Content: xsl:fallback* -->
</xsl:sequence>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Model:

<xsl:sort
 select? = expression
 lang? = { nmtoken }
 order? = { "ascending" | "descending" }
 collation? = { uri }
 stable? = { "yes" | "no" }
 case-order? = { "upper-first" | "lower-first" }
 data-type? = { "text" | "number" | qname-but-not-ncname }>
 <!-- Content: sequence-constructor -->
</xsl:sort>

Permitted parent elements:

xsl:apply-templates
xsl:for-each
xsl:for-each-group
xsl:perform-sort

Category: declaration

Model:

<xsl:strip-space
 elements = tokens />

Permitted parent elements:

xsl:stylesheet
xsl:transform

Model:

<xsl:stylesheet
 id? = id
 extension-element-prefixes? = tokens
 exclude-result-prefixes? = tokens
 version = number
 xpath-default-namespace? = uri
 default-validation? = "preserve" | "strip"
 default-collation? = uri-list
 input-type-annotations? = "preserve" | "strip" | "unspecified">
 <!-- Content: (xsl:import*, other-declarations) -->
</xsl:stylesheet>

Permitted parent elements:

None

Category: declaration

Model:

Page 138 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:text

xsl:transform

xsl:value-of

xsl:variable

<xsl:template
 match? = pattern
 name? = qname
 priority? = number
 mode? = tokens
 as? = sequence-type>
 <!-- Content: (xsl:param*, sequence-constructor) -->
</xsl:template>

Permitted parent elements:

xsl:stylesheet
xsl:transform

Category: instruction

Model:

<xsl:text
 [disable-output-escaping]? = "yes" | "no">
 <!-- Content: #PCDATA -->
</xsl:text>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Model:

<xsl:transform
 id? = id
 extension-element-prefixes? = tokens
 exclude-result-prefixes? = tokens
 version = number
 xpath-default-namespace? = uri
 default-validation? = "preserve" | "strip"
 default-collation? = uri-list
 input-type-annotations? = "preserve" | "strip" | "unspecified">
 <!-- Content: (xsl:import*, other-declarations) -->
</xsl:transform>

Permitted parent elements:

None

Category: instruction

Model:

<xsl:value-of
 select? = expression
 separator? = { string }
 [disable-output-escaping]? = "yes" | "no">
 <!-- Content: sequence-constructor -->
</xsl:value-of>

Permitted parent elements:

any XSLT element whose content model is sequence constructor
any literal result element

Category: declaration instruction

Model:

<xsl:variable
 name = qname
 select? = expression
 as? = sequence-type>
 <!-- Content: sequence-constructor -->
</xsl:variable>

Permitted parent elements:

xsl:stylesheet
xsl:transform
xsl:function
any XSLT element whose content model is sequence constructor
any literal result element

Page 139 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:when

xsl:with-param

E Summary of Error Conditions (Non-Normative)

This appendix provides a summary of error conditions that a processor may signal. This list is not exhaustive or definitive. The errors are
numbered for ease of reference, but there is no implication that an implementation MUST signal errors using these error codes, or that
applications can test for these codes. Moreover, implementations are not REQUIRED to signal errors using the descriptive text used here.

Static errors

ERR XTSE0010

A static error is signaled if an XSLT-defined element is used in a context where it is not permitted, if a REQUIRED attribute is omitted, or
if the content of the element does not correspond to the content that is allowed for the element.

ERR XTSE0020

It is a static error if an attribute (other than an attribute written using curly brackets in a position where an attribute value template is
permitted) contains a value that is not one of the permitted values for that attribute.

ERR XTSE0080

It is a static error to use a reserved namespace in the name of a named template, a mode, an attribute set, a key, a decimal-format, a
variable or parameter, a stylesheet function, a named output definition, or a character map.

ERR XTSE0090

It is a static error for an element from the XSLT namespace to have an attribute whose namespace is either null (that is, an attribute
with an unprefixed name) or the XSLT namespace, other than attributes defined for the element in this document.

ERR XTSE0110

The value of the version attribute MUST be a number: specifically, it MUST be a a valid instance of the type xs:decimal as defined in
[XML Schema Part 2].

ERR XTSE0120

An xsl:stylesheet element MUST NOT have any text node children.

ERR XTSE0125

It is a static error if the value of an [xsl:]default-collation attribute, after resolving against the base URI, contains no URI that the
implementation recognizes as a collation URI.

ERR XTSE0130

It is a static error if the xsl:stylesheet element has a child element whose name has a null namespace URI.

ERR XTSE0150

A literal result element that is used as the outermost element of a simplified stylesheet module MUST have an xsl:version attribute.

ERR XTSE0165

It is a static error if the processor is not able to retrieve the resource identified by the URI reference [in the href attribute of

Model:

<xsl:when
 test = expression>
 <!-- Content: sequence-constructor -->
</xsl:when>

Permitted parent elements:

xsl:choose

Model:

<xsl:with-param
 name = qname
 select? = expression
 as? = sequence-type
 tunnel? = "yes" | "no">
 <!-- Content: sequence-constructor -->
</xsl:with-param>

Permitted parent elements:

xsl:apply-templates
xsl:apply-imports
xsl:call-template
xsl:next-match

Page 140 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

xsl:include or xsl:import] , or if the resource that is retrieved does not contain a stylesheet module conforming to this specification.

ERR XTSE0170

An xsl:include element MUST be a top-level element.

ERR XTSE0180

It is a static error if a stylesheet module directly or indirectly includes itself.

ERR XTSE0190

An xsl:import element MUST be a top-level element.

ERR XTSE0200

The xsl:import element children MUST precede all other element children of an xsl:stylesheet element, including any xsl:include
element children and any user-defined data elements.

ERR XTSE0210

It is a static error if a stylesheet module directly or indirectly imports itself.

ERR XTSE0215

It is a static error if an xsl:import-schema element that contains an xs:schema element has a schema-location attribute, or if it has a
namespace attribute that conflicts with the target namespace of the contained schema.

ERR XTSE0220

It is a static error if the synthetic schema document does not satisfy the constraints described in [XML Schema Part 1] (section 5.1,
Errors in Schema Construction and Structure). This includes, without loss of generality, conflicts such as multiple definitions of the
same name.

ERR XTSE0260

Within an XSLT element that is REQUIRED to be empty, any content other than comments or processing instructions, including any
whitespace text node preserved using the xml:space="preserve" attribute, is a static error.

ERR XTSE0265

It is a static error if there is a stylesheet module in the stylesheet that specifies input-type-annotations="strip" and another
stylesheet module that specifies input-type-annotations="preserve".

ERR XTSE0280

In the case of a prefixed QName used as the value of an attribute in the stylesheet, or appearing within an XPath expression in the
stylesheet, it is a static error if the defining element has no namespace node whose name matches the prefix of the QName.

ERR XTSE0340

Where an attribute is defined to contain a pattern, it is a static error if the pattern does not match the production Pattern.

ERR XTSE0350

It is a static error if an unescaped left curly bracket appears in a fixed part of an attribute value template without a matching right curly
bracket.

ERR XTSE0370

It is a static error if an unescaped right curly bracket occurs in a fixed part of an attribute value template.

ERR XTSE0500

An xsl:template element MUST have either a match attribute or a name attribute, or both. An xsl:template element that has no match
attribute MUST have no mode attribute and no priority attribute.

ERR XTSE0530

The value of this attribute [the priority attribute of the xsl:template element] MUST conform to the rules for the xs:decimal type
defined in [XML Schema Part 2]. Negative values are permitted..

ERR XTSE0550

It is a static error if the list [of modes in the mode attribute of xsl:template] is empty, if the same token is included more than once in the
list, if the list contains an invalid token, or if the token #all appears together with any other value.

ERR XTSE0580

It is a static error if two parameters of a template or of a stylesheet function have the same name.

ERR XTSE0620

It is a static error if a variable-binding element has a select attribute and has non-empty content.

Page 141 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

ERR XTSE0630

It is a static error if a stylesheet contains more than one binding of a global variable with the same name and same import precedence,
unless it also contains another binding with the same name and higher import precedence.

ERR XTSE0650

It is a static error if a stylesheet contains an xsl:call-template instruction whose name attribute does not match the name attribute of
any xsl:template in the stylesheet.

ERR XTSE0660

It is a static error if a stylesheet contains more than one template with the same name and the same import precedence, unless it also
contains a template with the same name and higher import precedence.

ERR XTSE0670

It is a static error if a single xsl:call-template, xsl:apply-templates, xsl:apply-imports, or xsl:next-match element contains two or
more xsl:with-param elements with matching name attributes.

ERR XTSE0680

In the case of xsl:call-template, it is a static error to pass a non-tunnel parameter named x to a template that does not have a
template parameter named x, unless backwards compatible behavior is enabled for the xsl:call-template instruction.

ERR XTSE0690

It is a static error if a template that is invoked using xsl:call-template declares a template parameter specifying required="yes" and
not specifying tunnel="yes", if no value for this parameter is supplied by the calling instruction.

ERR XTSE0710

It is a static error if the value of the use-attribute-sets attribute of an xsl:copy, xsl:element, or xsl:attribute-set element, or the
xsl:use-attribute-sets attribute of a literal result element, is not a whitespace-separated sequence of QNames, or if it contains a
QName that does not match the name attribute of any xsl:attribute-set declaration in the stylesheet.

ERR XTSE0720

It is a static error if an xsl:attribute-set element directly or indirectly references itself via the names contained in the use-attribute-
sets attribute.

ERR XTSE0740

A stylesheet function MUST have a prefixed name, to remove any risk of a clash with a function in the default function namespace. It is
a static error if the name has no prefix.

ERR XTSE0760

Because arguments to a stylesheet function call MUST all be specified, the xsl:param elements within an xsl:function element MUST
NOT specify a default value: this means they MUST be empty, and MUST NOT have a select attribute.

ERR XTSE0770

It is a static error for a stylesheet to contain two or more functions with the same expanded-QName, the same arity, and the same
import precedence, unless there is another function with the same expanded-QName and arity, and a higher import precedence.

ERR XTSE0805

It is a static error if an attribute on a literal result element is in the XSLT namespace, unless it is one of the attributes explicitly defined
in this specification.

ERR XTSE0808

It is a static error if a namespace prefix is used within the [xsl:]exclude-result-prefixes attribute and there is no namespace binding
in scope for that prefix.

ERR XTSE0809

It is a static error if the value #default is used within the [xsl:]exclude-result-prefixes attribute and the parent element of the
[xsl:]exclude-result-prefixes attribute has no default namespace.

ERR XTSE0810

It is a static error if there is more than one such declaration [more than one xsl:namespace-alias declaration] with the same literal
namespace URI and the same import precedence and different values for the target namespace URI, unless there is also an
xsl:namespace-alias declaration with the same literal namespace URI and a higher import precedence.

ERR XTSE0812

It is a static error if a value other than #default is specified for either the stylesheet-prefix or the result-prefix attributes of the
xsl:namespace-alias element when there is no in-scope binding for that namespace prefix.

ERR XTSE0840

Page 142 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

It is a static error if the select attribute of the xsl:attribute element is present unless the element has empty content.

ERR XTSE0870

It is a static error if the select attribute of the xsl:value-of element is present when the content of the element is non-empty, or if the
select attribute is absent when the content is empty.

ERR XTSE0880

It is a static error if the select attribute of the xsl:processing-instruction element is present unless the element has empty content.

ERR XTSE0910

It is a static error if the select attribute of the xsl:namespace element is present when the element has content other than one or more
xsl:fallback instructions, or if the select attribute is absent when the element has empty content.

ERR XTSE0940

It is a static error if the select attribute of the xsl:comment element is present unless the element has empty content.

ERR XTTE0950

It is a type error to use the xsl:copy or xsl:copy-of instruction to copy a node that has namespace-sensitive content if the copy-
namespaces attribute has the value no and its explicit or implicit validation attribute has the value preserve. It is also a type error if
either of these instructions (with validation="preserve") is used to copy an attribute having namespace-sensitive content, unless the
parent element is also copied. A node has namespace-sensitive content if its typed value contains an item of type xs:QName or
xs:NOTATION or a type derived therefrom. The reason this is an error is because the validity of the content depends on the namespace
context being preserved.

ERR XTSE0975

It is a static error if the value attribute of xsl:number is present unless the select, level, count, and from attributes are all absent.

ERR XTSE1015

It is a static error if an xsl:sort element with a select attribute has non-empty content.

ERR XTSE1017

It is a static error if an xsl:sort element other than the first in a sequence of sibling xsl:sort elements has a stable attribute.

ERR XTSE1040

It is a static error if an xsl:perform-sort instruction with a select attribute has any content other than xsl:sort and xsl:fallback
instructions.

ERR XTSE1060

It is a static error if the current-group function is used within a pattern.

ERR XTSE1070

It is a static error if the current-grouping-key function is used within a pattern.

ERR XTSE1080

These four attributes [the group-by, group-adjacent, group-starting-with, and group-ending-with attributes of xsl:for-each-group]
are mutually exclusive: it is a static error if none of these four attributes is present, or if more than one of them is present.

ERR XTSE1090

It is an error to specify the collation attribute if neither the group-by attribute nor group-adjacent attribute is specified.

ERR XTSE1130

It is a static error if the xsl:analyze-string instruction contains neither an xsl:matching-substring nor an xsl:non-matching-
substring element.

ERR XTSE1205

It is a static error if an xsl:key declaration has a use attribute and has non-empty content, or if it has empty content and no use
attribute.

ERR XTSE1210

It is a static error if the xsl:key declaration has a collation attribute whose value (after resolving against the base URI) is not a URI
recognized by the implementation as referring to a collation.

ERR XTSE1220

It is a static error if there are several xsl:key declarations in the stylesheet with the same key name and different effective collations.
Two collations are the same if their URIs are equal under the rules for comparing xs:anyURI values, or if the implementation can
determine that they are different URIs referring to the same collation.

Page 143 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

ERR XTSE1290

It is a static error if a named or unnamed decimal format contains two conflicting values for the same attribute in different xsl:decimal-
format declarations having the same import precedence, unless there is another definition of the same attribute with higher import
precedence.

ERR XTSE1295

It is a static error if the character specified in the zero-digit attribute is not a digit or is a digit that does not have the numeric value
zero.

ERR XTSE1300

It is a static error if, for any named or unnamed decimal format, the variables representing characters used in a picture string do not
each have distinct values. These variables are decimal-separator-sign, grouping-sign, percent-sign, per-mille-sign, digit-zero-sign,
digit-sign, and pattern-separator-sign.

ERR XTSE1430

It is a static error if there is no namespace bound to the prefix on the element bearing the [xsl:]extension-element-prefixes attribute
or, when #default is specified, if there is no default namespace.

ERR XTSE1505

It is a static error if both the [xsl:]type and [xsl:]validation attributes are present on the xsl:element, xsl:attribute, xsl:copy,
xsl:copy-of, xsl:document, or xsl:result-document instructions, or on a literal result element.

ERR XTSE1520

It is a static error if the value of the type attribute of an xsl:element, xsl:attribute, xsl:copy, xsl:copy-of, xsl:document, or
xsl:result-document instruction, or the xsl:type attribute of a literal result element, is not a valid QName, or if it uses a prefix that is not
defined in an in-scope namespace declaration, or if the QName is not the name of a type definition included in the in-scope schema
components for the stylesheet.

ERR XTSE1530

It is a static error if the value of the type attribute of an xsl:attribute instruction refers to a complex type definition

ERR XTSE1560

It is a static error if two xsl:output declarations within an output definition specify explicit values for the same attribute (other than
cdata-section-elements and use-character-maps), with the values of the attributes being not equal, unless there is another
xsl:output declaration within the same output definition that has higher import precedence and that specifies an explicit value for the
same attribute.

ERR XTSE1570

The value [of the method attribute on xsl:output] MUST (if present) be a valid QName. If the QName does not have a prefix, then it
identifies a method specified in [XSLT and XQuery Serialization] and MUST be one of xml, html, xhtml, or text.

ERR XTSE1580

It is a static error if the stylesheet contains two or more character maps with the same name and the same import precedence, unless it
also contains another character map with the same name and higher import precedence.

ERR XTSE1590

It is a static error if a name in the use-character-maps attribute of the xsl:output or xsl:character-map elements does not match the
name attribute of any xsl:character-map in the stylesheet.

ERR XTSE1600

It is a static error if a character map references itself, directly or indirectly, via a name in the use-character-maps attribute.

ERR XTSE1650

A basic XSLT processor MUST signal a static error if the stylesheet includes an xsl:import-schema declaration.

ERR XTSE1660

A basic XSLT processor MUST signal a static error if the stylesheet includes an [xsl:]type attribute, or an [xsl:]validation or
default-validation attribute with a value other than strip.

Type errors

ERR XTTE0505

It is a type error if the result of evaluating the sequence constructor cannot be converted to the required type.

ERR XTTE0510

It is a type error if an xsl:apply-templates instruction with no select attribute is evaluated when the context item is not a node.

ERR XTTE0520

Page 144 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

It is a type error if the sequence returned by the select expression [of xsl:apply-templates] contains an item that is not a node.

ERR XTTE0570

It is a type error if the supplied value of a variable cannot be converted to the required type.

ERR XTTE0590

It is a type error if the conversion of the supplied value of a parameter to its required type fails.

ERR XTTE0600

If a default value is given explicitly, that is, if there is either a select attribute or a non-empty sequence constructor, then it is a type
error if the default value cannot be converted to the required type, using the function conversion rules.

ERR XTTE0780

If the as attribute [of xsl:function] is specified, then the result evaluated by the sequence constructor (see 5.7 Sequence
Constructors) is converted to the required type, using the function conversion rules. It is a type error if this conversion fails.

ERR XTTE0790

If the value of a parameter to a stylesheet function cannot be converted to the required type, a type error is signaled.

ERR XTTE0990

It is a type error if the xsl:number instruction is evaluated, with no value or select attribute, when the context item is not a node.

ERR XTTE1000

It is a type error if the result of evaluating the select attribute of the xsl:number instruction is anything other than a single node.

ERR XTTE1020

If any sort key value, after atomization and any type conversion REQUIRED by the data-type attribute, is a sequence containing more
than one item, then the effect depends on whether the xsl:sort element is evaluated with backwards compatible behavior. With
backwards compatible behavior, the effective sort key value is the first item in the sequence. In other cases, this is a type error.

ERR XTTE1100

It is a type error if the grouping key evaluated using the group-adjacent attribute is an empty sequence, or a sequence containing
more than one item.

ERR XTTE1120

When the group-starting-with or group-ending-with attribute [of the xsl:for-each-group instruction] is used, it is a type error if the
result of evaluating the select expression contains an item that is not a node.

ERR XTTE1510

If the validation attribute of an xsl:element, xsl:attribute, xsl:copy, xsl:copy-of, or xsl:result-document instruction, or the
xsl:validation attribute of a literal result element, has the effective value strict, and schema validity assessment concludes that the
validity of the element or attribute is invalid or unknown, a type error occurs. As with other type errors, the error MAY be signaled
statically if it can be detected statically.

ERR XTTE1512

If the validation attribute of an xsl:element, xsl:attribute, xsl:copy, xsl:copy-of, or xsl:result-document instruction, or the
xsl:validation attribute of a literal result element, has the effective value strict, and there is no matching top-level declaration in the
schema, then a type error occurs. As with other type errors, the error MAY be signaled statically if it can be detected statically.

ERR XTTE1515

If the validation attribute of an xsl:element, xsl:attribute, xsl:copy, xsl:copy-of, or xsl:result-document instruction, or the
xsl:validation attribute of a literal result element, has the effective value lax, and schema validity assessment concludes that the
element or attribute is invalid, a type error occurs. As with other type errors, the error MAY be signaled statically if it can be detected
statically.

ERR XTTE1540

It is a type error if an [xsl:]type attribute is defined for a constructed element or attribute, and the outcome of schema validity
assessment against that type is that the validity property of that element or attribute information item is other than valid.

ERR XTTE1545

A type error occurs if a type or validation attribute is defined (explicitly or implicitly) for an instruction that constructs a new attribute
node, if the effect of this is to cause the attribute value to be validated against a type that is derived from, or constructed by list or union
from, the primitive types xs:QName or xs:NOTATION.

ERR XTTE1550

A type error occurs [when a document node is validated] unless the children of the document node comprise exactly one element
node, no text nodes, and zero or more comment and processing instruction nodes, in any order.

Page 145 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

ERR XTTE1555

It is a type error if, when validating a document node, document-level constraints are not satisfied. These constraints include identity
constraints (xs:unique, xs:key, and xs:keyref) and ID/IDREF constraints.

Dynamic errors

ERR XTDE0030

It is a non-recoverable dynamic error if the effective value of an attribute written using curly brackets, in a position where an attribute
value template is permitted, is a value that is not one of the permitted values for that attribute. If the processor is able to detect the
error statically (for example, when any XPath expressions within the curly brackets can be evaluated statically), then the processor
may optionally signal this as a static error.

ERR XTDE0040

It is a non-recoverable dynamic error if the invocation of the stylesheet specifies a template name that does not match the expanded-
QName of a named template defined in the stylesheet.

ERR XTDE0045

It is a non-recoverable dynamic error if the invocation of the stylesheet specifies an initial mode (other than the default mode) that does
not match the expanded-QName in the mode attribute of any template defined in the stylesheet.

ERR XTDE0047

It is a non-recoverable dynamic error if the invocation of the stylesheet specifies both an initial mode and an initial template.

ERR XTDE0050

It is a non-recoverable dynamic error if the stylesheet that is invoked declares a visible stylesheet parameter with required="yes" and
no value for this parameter is supplied during the invocation of the stylesheet. A stylesheet parameter is visible if it is not masked by
another global variable or parameter with the same name and higher import precedence.

ERR XTDE0060

It is a non-recoverable dynamic error if the initial template defines a template parameter that specifies required="yes".

ERR XTDE0160

If an implementation does not support backwards-compatible behavior, then it is a non-recoverable dynamic error if any element is
evaluated that enables backwards-compatible behavior.

ERR XTRE0270

It is a recoverable dynamic error if this [the process of finding an xsl:strip-space or xsl:preserve-space declaration to match an
element in the source document] leaves more than one match, unless all the matched declarations are equivalent (that is, they are all
xsl:strip-space or they are all xsl:preserve-space).
 Action: The optional recovery action is to select, from the matches that are left, the one that occurs last in declaration order.

ERR XTDE0290

Where the result of evaluating an XPath expression (or an attribute value template) is required to be a lexical QName, then unless
otherwise specified it is a non-recoverable dynamic error if the defining element has no namespace node whose name matches the
prefix of the lexical QName. This error MAY be signaled as a static error if the value of the expression can be determined statically.

ERR XTDE0410

It is a non-recoverable dynamic error if the result sequence used to construct the content of an element node contains a namespace
node or attribute node that is preceded in the sequence by a node that is neither a namespace node nor an attribute node.

ERR XTDE0420

It is a non-recoverable dynamic error if the result sequence used to construct the content of a document node contains a namespace
node or attribute node.

ERR XTDE0430

It is a non-recoverable dynamic error if the result sequence contains two or more namespace nodes having the same name but
different string values (that is, namespace nodes that map the same prefix to different namespace URIs).

ERR XTDE0440

It is a non-recoverable dynamic error if the result sequence contains a namespace node with no name and the element node being
constructed has a null namespace URI (that is, it is an error to define a default namespace when the element is in no namespace).

ERR XTDE0485

It is a non-recoverable dynamic error if namespace fixup is performed on an element that contains among the typed values of the
element and its attributes two values of type xs:QName or xs:NOTATION containing conflicting namespace prefixes, that is, two values
that use the same prefix to refer to different namespace URIs.

ERR XTRE0540

It is a recoverable dynamic error if the conflict resolution algorithm for template rules leaves more than one matching template rule.

Page 146 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 Action: The optional recovery action is to select, from the matching template rules that are left, the one that occurs last in declaration
order.

ERR XTDE0560

It is a non-recoverable dynamic error if xsl:apply-imports or xsl:next-match is evaluated when the current template rule is null.

ERR XTDE0610

If an optional parameter has no select attribute and has an empty sequence constructor, and if there is an as attribute, then the default
value of the parameter is an empty sequence. If the empty sequence is not a valid instance of the required type defined in the as
attribute, then the parameter is treated as a required parameter, which means that it is a non-recoverable dynamic error if the caller
supplies no value for the parameter.

ERR XTDE0640

In general, a circularity in a stylesheet is a non-recoverable dynamic error.

ERR XTDE0700

In other cases, [with xsl:apply-templates, xsl:apply-imports, and xsl:next-match, or xsl:call-template with tunnel parameters] it
is a non-recoverable dynamic error if the template that is invoked declares a template parameter with required="yes" and no value for
this parameter is supplied by the calling instruction.

ERR XTRE0795

It is a recoverable dynamic error if the name of a constructed attribute is xml:space and the value is not either default or preserve.
 Action: The optional recovery action is to construct the attribute with the value as requested.

ERR XTDE0820

It is a non-recoverable dynamic error if the effective value of the name attribute [of the xsl:element instruction] is not a lexical QName.

ERR XTDE0830

In the case of an xsl:element instruction with no namespace attribute, it is a non-recoverable dynamic error if the effective value of the
name attribute is a QName whose prefix is not declared in an in-scope namespace declaration for the xsl:element instruction.

ERR XTDE0835

It is a non-recoverable dynamic error if the effective value of the namespace attribute [of the xsl:element instruction] is not in the lexical
space of the xs:anyURI data type.

ERR XTDE0850

It is a non-recoverable dynamic error if the effective value of the name attribute [of an xsl:attribute instruction] is not a lexical QName.

ERR XTDE0855

In the case of an xsl:attribute instruction with no namespace attribute, it is a non-recoverable dynamic error if the effective value of
the name attribute is the string xmlns.

ERR XTDE0860

In the case of an xsl:attribute instruction with no namespace attribute, it is a non-recoverable dynamic error if the effective value of
the name attribute is a lexical QName whose prefix is not declared in an in-scope namespace declaration for the xsl:attribute
instruction.

ERR XTDE0865

It is a non-recoverable dynamic error if the effective value of the namespace attribute [of the xsl:attribute instruction] is not in the
lexical space of the xs:anyURI data type.

ERR XTDE0890

It is a non-recoverable dynamic error if the effective value of the name attribute [of the xsl:processing-instruction instruction] is not
both an NCName Names and a PITarget XML.

ERR XTDE0905

It is a non-recoverable dynamic error if the string value of the new namespace node [created using xsl:namespace] is not valid in the
lexical space of the data type xs:anyURI. [see ERR XTDE0835]

ERR XTDE0920

It is a non-recoverable dynamic error if the effective value of the name attribute [of the xsl:namespace instruction] is neither a zero-
length string nor an NCName Names, or if it is xmlns.

ERR XTDE0925

It is a non-recoverable dynamic error if the xsl:namespace instruction generates a namespace node whose name is xml and whose
string value is not http://www.w3.org/XML/1998/namespace, or a namespace node whose string value is
http://www.w3.org/XML/1998/namespace and whose name is not xml.

Page 147 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

ERR XTDE0930

It is a non-recoverable dynamic error if evaluating the select attribute or the contained sequence constructor of an xsl:namespace
instruction results in a zero-length string.

ERR XTDE0980

It is a non-recoverable dynamic error if any undiscarded item in the atomized sequence supplied as the value of the value attribute of
xsl:number cannot be converted to an integer, or if the resulting integer is less than 0 (zero).

ERR XTDE1030

It is a non-recoverable dynamic error if, for any sort key component, the set of sort key values evaluated for all the items in the initial
sequence, after any type conversion requested, contains a pair of ordinary values for which the result of the XPath lt operator is an
error.

ERR XTDE1035

It is a non-recoverable dynamic error if the collation attribute of xsl:sort (after resolving against the base URI) is not a URI that is
recognized by the implementation as referring to a collation.

ERR XTDE1110

It is a non-recoverable dynamic error if the collation URI specified to xsl:for-each-group (after resolving against the base URI) is a
collation that is not recognized by the implementation. (For notes, [see ERR XTDE1035].)

ERR XTDE1140

It is a non-recoverable dynamic error if the effective value of the regex attribute [of the xsl:analyze-string instruction] does not
conform to the REQUIRED syntax for regular expressions, as specified in [Functions and Operators]. If the regular expression is known
statically (for example, if the attribute does not contain any expressions enclosed in curly brackets) then the processor MAY signal the
error as a static error.

ERR XTDE1145

It is a non-recoverable dynamic error if the effective value of the flags attribute [of the xsl:analyze-string instruction] has a value
other than the values defined in [Functions and Operators]. If the value of the attribute is known statically (for example, if the attribute
does not contain any expressions enclosed in curly brackets) then the processor MAY signal the error as a static error.

ERR XTDE1150

It is a non-recoverable dynamic error if the effective value of the regex attribute [of the xsl:analyze-string instruction] is a regular
expression that matches a zero-length string: or more specifically, if the regular expression $r and flags $f are such that matches("",
$r, $f) returns true. If the regular expression is known statically (for example, if the attribute does not contain any expressions
enclosed in curly brackets) then the processor MAY signal the error as a static error.

ERR XTRE1160

When a URI reference [supplied to the document function] contains a fragment identifier, it is a recoverable dynamic error if the media
type is not one that is recognized by the processor, or if the fragment identifier does not conform to the rules for fragment identifiers for
that media type, or if the fragment identifier selects something other than a sequence of nodes (for example, if it selects a range of
characters within a text node).
 Action: The optional recovery action is to ignore the fragment identifier and return the document node.

ERR XTDE1170

It is a non-recoverable dynamic error if a URI [supplied in the first argument to the unparsed-text function] contains a fragment
identifier, or if it cannot be used to retrieve a resource containing text.

ERR XTDE1190

It is a non-recoverable dynamic error if a resource [retrieved using the unparsed-text function] contains octets that cannot be decoded
into Unicode characters using the specified encoding, or if the resulting characters are not permitted XML characters. This includes the
case where the processor does not support the requested encoding.

ERR XTDE1200

It is a non-recoverable dynamic error if the second argument of the unparsed-text function is omitted and the processor cannot infer
the encoding using external information and the encoding is not UTF-8.

ERR XTDE1260

It is a non-recoverable dynamic error if the value [of the first argument to the key function] is not a valid QName, or if there is no
namespace declaration in scope for the prefix of the QName, or if the name obtained by expanding the QName is not the same as the
expanded name of any xsl:key declaration in the stylesheet. If the processor is able to detect the error statically (for example, when
the argument is supplied as a string literal), then the processor MAY optionally signal this as a static error.

ERR XTDE1270

It is a non-recoverable dynamic error to call the key function with two arguments if there is no context node, or if the root of the tree
containing the context node is not a document node; or to call the function with three arguments if the root of the tree containing the
node supplied in the third argument is not a document node.

ERR XTDE1280

Page 148 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

It is a non-recoverable dynamic error if the name specified as the $decimal-format-name argument [to the format-number function] is
not a valid QName, or if its prefix has not been declared in an in-scope namespace declaration, or if the stylesheet does not contain a
declaration of a decimal-format with a matching expanded-QName. If the processor is able to detect the error statically (for example,
when the argument is supplied as a string literal), then the processor MAY optionally signal this as a static error.

ERR XTDE1310

The picture string [supplied to the format-number function] MUST conform to the following rules. [See full specification.] It is a non-
recoverable dynamic error if the picture string does not satisfy these rules.

ERR XTDE1340

It is a non-recoverable dynamic error if the syntax of the picture [used for date/time formatting] is incorrect.

ERR XTDE1350

It is a non-recoverable dynamic error if a component specifier within the picture [used for date/time formatting] refers to components
that are not available in the given type of $value, for example if the picture supplied to the format-time refers to the year, month, or
day component.

ERR XTDE1360

If the current function is evaluated within an expression that is evaluated when the context item is undefined, a non-recoverable
dynamic error occurs.

ERR XTDE1370

It is a non-recoverable dynamic error if the unparsed-entity-uri function is called when there is no context node, or when the root of
the tree containing the context node is not a document node.

ERR XTDE1380

It is a non-recoverable dynamic error if the unparsed-entity-public-id function is called when there is no context node, or when the
root of the tree containing the context node is not a document node.

ERR XTDE1390

It is a non-recoverable dynamic error if the value [supplied as the $property-name argument to the system-property function] is not a
valid QName, or if there is no namespace declaration in scope for the prefix of the QName. If the processor is able to detect the error
statically (for example, when the argument is supplied as a string literal), then the processor MAY optionally signal this as a static error.

ERR XTMM9000

When a transformation is terminated by use of xsl:message terminate="yes", the effect is the same as when a non-recoverable
dynamic error occurs during the transformation.

ERR XTDE1400

It is a non-recoverable dynamic error if the argument [passed to the function-available function] does not evaluate to a string that is
a valid QName, or if there is no namespace declaration in scope for the prefix of the QName. If the processor is able to detect the error
statically (for example, when the argument is supplied as a string literal), then the processor MAY optionally signal this as a static error.

ERR XTDE1420

It is a non-recoverable dynamic error if the arguments supplied to a call on an extension function do not satisfy the rules defined for
that particular extension function, or if the extension function reports an error, or if the result of the extension function cannot be
converted to an XPath value.

ERR XTDE1425

When backwards compatible behavior is enabled, it is a non-recoverable dynamic error to evaluate an extension function call if no
implementation of the extension function is available.

ERR XTDE1428

It is a non-recoverable dynamic error if the argument [passed to the type-available function] does not evaluate to a string that is a
valid QName, or if there is no namespace declaration in scope for the prefix of the QName. If the processor is able to detect the error
statically (for example, when the argument is supplied as a string literal), then the processor MAY optionally signal this as a static error.

ERR XTDE1440

It is a non-recoverable dynamic error if the argument [passed to the element-available function] does not evaluate to a string that is a
valid QName, or if there is no namespace declaration in scope for the prefix of the QName. If the processor is able to detect the error
statically (for example, when the argument is supplied as a string literal), then the processor MAY optionally signal this as a static error.

ERR XTDE1450

When a processor performs fallback for an extension instruction that is not recognized, if the instruction element has one or more
xsl:fallback children, then the content of each of the xsl:fallback children MUST be evaluated; it is a non-recoverable dynamic error
if it has no xsl:fallback children.

ERR XTDE1460

It is a non-recoverable dynamic error if the effective value of the format attribute [of an xsl:result-document element] is not a valid
lexical QName, or if it does not match the expanded-QName of an output definition in the stylesheet. If the processor is able to detect

Page 149 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

the error statically (for example, when the format attribute contains no curly brackets), then the processor MAY optionally signal this as
a static error.

ERR XTDE1480

It is a non-recoverable dynamic error to evaluate the xsl:result-document instruction in temporary output state.

ERR XTDE1490

It is a non-recoverable dynamic error for a transformation to generate two or more final result trees with the same URI.

ERR XTRE1495

It is a recoverable dynamic error for a transformation to generate two or more final result trees with URIs that identify the same physical
resource. The optional recovery action is implementation-dependent, since it may be impossible for the processor to detect the error.

ERR XTRE1500

It is a recoverable dynamic error for a stylesheet to write to an external resource and read from the same resource during a single
transformation, whether or not the same URI is used to access the resource in both cases.
 Action: The optional recovery action is implementation-dependent: implementations are not REQUIRED to detect the error condition.
Note that if the error is not detected, it is undefined whether the document that is read from the resource reflects its state before or after
the result tree is written.

ERR XTRE1620

It is a recoverable dynamic error if an xsl:value-of or xsl:text instruction specifies that output escaping is to be disabled and the
implementation does not support this.
 Action: The optional recovery action is to ignore the disable-output-escaping attribute.

ERR XTRE1630

It is a recoverable dynamic error if an xsl:value-of or xsl:text instruction specifies that output escaping is to be disabled when
writing to a final result tree that is not being serialized.
 Action: The optional recovery action is to ignore the disable-output-escaping attribute.

ERR XTDE1665

A basic XSLT processor MUST raise a non-recoverable dynamic error if the input to the processor includes a node with a type
annotation other than xs:untyped or xs:untypedAtomic, or an atomic value of a type other than those which a basic XSLT processor
supports.

F Checklist of Implementation-Defined Features (Non-Normative)

This appendix provides a summary of XSLT language features whose effect is explicitly implementation-defined. The conformance rules
(see 21 Conformance) require vendors to provide documentation that explains how these choices have been exercised.

1. The way in which an XSLT processor is invoked, and the way in which values are supplied for the source document, starting node,
stylesheet parameters, and base output URI, are implementation-defined. (See 2.3 Initiating a Transformation)

2. The mechanisms for creating new extension instructions and extension functions are implementation-defined. (See 2.7 Extensibility)
3. Where the specification provides a choice between signaling a dynamic error or recovering, the decision that is made (but not the

recovery action itself) is implementation-defined. (See 2.9 Error Handling)
4. It is implementation-defined whether type errors are signaled statically. (See 2.9 Error Handling)
5. The set of namespaces that are specially recognized by the implementation (for example, for user-defined data elements, and

extension attributes) is implementation-defined. (See 3.6.2 User-defined Data Elements)
6. The effect of user-defined data elements whose name is in a namespace recognized by the implementation is implementation-defined.

(See 3.6.2 User-defined Data Elements)
7. It is implementation-defined whether an XSLT 2.0 processor supports backwards-compatible behavior. (See 3.8 Backwards-

Compatible Processing)
8. It is implementation-defined what forms of URI reference are acceptable in the href attribute of the xsl:include and xsl:import

elements, for example, the URI schemes that may be used, the forms of fragment identifier that may be used, and the media types that
are supported. (See 3.10.1 Locating Stylesheet Modules)

9. An implementation may define mechanisms, above and beyond xsl:import-schema that allow schema components such as type
definitions to be made available within a stylesheet. (See 3.13 Built-in Types)

10. It is implementation-defined which versions of XML and XML Namespaces (1.0 and/or 1.1) are supported. (See 4.1 XML Versions)
11. Limits on the value space of primitive data types, where not fixed by [XML Schema Part 2], are implementation-defined. (See 4.6

Limits)
12. The implicit timezone for a transformation is implementation-defined. (See 5.4.3.2 Other components of the XPath Dynamic Context)
13. If an xml:id attribute that has not been subjected to attribute value normalization is copied from a source tree to a result tree, it is

implementation-defined whether attribute value normalization will be applied during the copy process. (See 11.9.1 Shallow Copy)
14. The numbering sequences supported by the xsl:number instructions, beyond those defined in this specification, are implementation-

defined. (See 12.3 Number to String Conversion Attributes)
15. There MAY be implementation-defined upper bounds on the numbers that can be formatted by xsl:number using any particular

numbering sequence. (See 12.3 Number to String Conversion Attributes)
16. The set of languages for which numbering is supported by xsl:number, and the method of choosing a default language, are

implementation-defined. (See 12.3 Number to String Conversion Attributes)
17. If the data-type attribute of the xsl:sort element has a value other than text or number, the effect is implementation-defined. (See

13.1.2 Comparing Sort Key Values)
18. The facilities for defining collations and allocating URIs to identify them are implementation-defined. (See 13.1.3 Sorting Using

Collations)

Page 150 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

19. The algorithm used by xsl:sort to locate a collation, given the values of the lang and case-order attributes, is implementation-defined.
(See 13.1.3 Sorting Using Collations)

20. The set of media types recognized by the processor, for the purpose of interpreting fragment identifiers in URI references passed to
the document function, is implementation-defined. (See 16.1 Multiple Source Documents)

21. The set of encodings recognized by the unparsed-text function, other than utf-8 and utf-16, is implementation-defined. (See 16.2
Reading Text Files)

22. If no encoding is specified on a call to the unparsed-text function, the processor MAY use implementation-defined heuristics to
determine the likely encoding. (See 16.2 Reading Text Files)

23. The set of languages, calendars, and countries that are supported in the date formatting functions is implementation-defined. If any of
these arguments is omitted or set to an empty sequence, the default is implementation-defined. (See 16.5.2 The Language, Calendar,
and Country Arguments)

24. The choice of the names and abbreviations used in any given language for calendar units such as days of the week and months of the
year is implementation-defined. (See 16.5.2 The Language, Calendar, and Country Arguments)

25. The values returned by the system-property function, and the names of the additional properties that are recognized, are
implementation-defined. (See 16.6.5 system-property)

26. The destination and formatting of messages written using the xsl:message instruction are implementation-defined. (See 17 Messages)
27. The effect of an extension function returning a string containing characters that are not legal in XML is implementation-defined. (See

18.1.2 Calling Extension Functions)
28. The way in which external objects are represented in the type system is implementation-defined. (See 18.1.3 External Objects)
29. The way in which a final result tree is delivered to an application is implementation-defined. (See 19 Final Result Trees)
30. Implementations MAY provide additional mechanisms allowing users to define the way in which final result trees are processed. (See

19.1 Creating Final Result Trees)
31. If serialization is supported, then the location to which a final result tree is serialized is implementation-defined, subject to the constraint

that relative URIs used to reference one tree from another remain valid. (See 20 Serialization)
32. The default value of the encoding attribute of the xsl:output element is implementation-defined. (See 20 Serialization)
33. It is implementation-defined which versions of XML, HTML, and XHTML are supported in the version attribute of the xsl:output

declaration. (See 20 Serialization)
34. The default value of the byte-order-mark serialization parameter is implementation-defined in the case of UTF-8 encoding. (See 20

Serialization)
35. It is implementation-defined whether, and under what circumstances, disabling output escaping is supported. (See 20.2 Disabling

Output Escaping)

G Schema for XSLT Stylesheets (Non-Normative)

The following schema describes the structure of an XSLT stylesheet module. It does not define all the constraints that apply to a stylesheet
(for example, it does not attempt to define a data type that precisely represents attributes containing XPath expressions). However, every
valid stylesheet module conforms to this schema, unless it contains elements that invoke forwards-compatible-behavior.

A copy of this schema is available at http://www.w3.org/2007/schema-for-xslt20.xsd

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.w3.org/1999/XSL/Transform" elementFormDef

<!-- ++ -->
<xs:annotation>
 <xs:documentation>

 This is a schema for XSLT 2.0 stylesheets.

 It defines all the elements that appear in the XSLT namespace; it also
 provides hooks that allow the inclusion of user-defined literal result elements,
 extension instructions, and top-level data elements.

 The schema is derived (with kind permission) from a schema for XSLT 1.0 stylesheets
 produced by Asir S Vedamuthu of WebMethods Inc.

 This schema is available for use under the conditions of the W3C Software License
 published at http://www.w3.org/Consortium/Legal/copyright-software-19980720

 The schema is organized as follows:

 PART A: definitions of complex types and model groups used as the basis
 for element definitions
 PART B: definitions of individual XSLT elements
 PART C: definitions for literal result elements
 PART D: definitions of simple types used in attribute definitions

 This schema does not attempt to define all the constraints that apply to a valid
 XSLT 2.0 stylesheet module. It is the intention that all valid stylesheet modules
 should conform to this schema; however, the schema is non-normative and in the event
 of any conflict, the text of the Recommendation takes precedence.

 This schema does not implement the special rules that apply when a stylesheet
 has sections that use forwards-compatible-mode. In this mode, setting version="3.0"
 allows elements from the XSLT namespace to be used that are not defined in XSLT 2.0.

 Simplified stylesheets (those with a literal result element as the outermost element)
 will validate against this schema only if validation starts in lax mode.

 This version is dated 2005-02-11
 Authors: Michael H Kay, Saxonica Limited
 Jeni Tennison, Jeni Tennison Consulting Ltd.

 </xs:documentation>
</xs:annotation>
<!-- ++ -->

<!--
The declaration of xml:space and xml:lang may need to be commented out because

Page 151 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

of problems processing the schema using various tools
-->

<xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>

<!--
 An XSLT stylesheet may contain an in-line schema within an xsl:import-schema element,
 so the Schema for schemas needs to be imported
-->

<xs:import namespace="http://www.w3.org/2001/XMLSchema"
 schemaLocation="http://www.w3.org/2001/XMLSchema.xsd"/>

<!-- ++ -->
<xs:annotation>
 <xs:documentation>
 PART A: definitions of complex types and model groups used as the basis
 for element definitions
 </xs:documentation>
</xs:annotation>
<!-- ++ -->

<xs:complexType name="generic-element-type" mixed="true">
 <xs:attribute name="default-collation" type="xsl:uri-list"/>
 <xs:attribute name="exclude-result-prefixes" type="xsl:prefix-list-or-all"/>
 <xs:attribute name="extension-element-prefixes" type="xsl:prefix-list"/>
 <xs:attribute name="use-when" type="xsl:expression"/>
 <xs:attribute name="xpath-default-namespace" type="xs:anyURI"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>

<xs:complexType name="versioned-element-type" mixed="true">
 <xs:complexContent>
 <xs:extension base="xsl:generic-element-type">
 <xs:attribute name="version" type="xs:decimal" use="optional"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="element-only-versioned-element-type" mixed="false">
 <xs:complexContent>
 <xs:restriction base="xsl:versioned-element-type">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name="sequence-constructor">
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:versioned-element-type">
 <xs:group ref="xsl:sequence-constructor-group" minOccurs="0" maxOccurs="unbounded"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:group name="sequence-constructor-group">
 <xs:choice>
 <xs:element ref="xsl:variable"/>
 <xs:element ref="xsl:instruction"/>
 <xs:group ref="xsl:result-elements"/>
 </xs:choice>
</xs:group>

<xs:element name="declaration" type="xsl:generic-element-type" abstract="true"/>

<xs:element name="instruction" type="xsl:versioned-element-type" abstract="true"/>

<!-- ++ -->
<xs:annotation>
 <xs:documentation>
 PART B: definitions of individual XSLT elements
 Elements are listed in alphabetical order.
 </xs:documentation>
</xs:annotation>
<!-- ++ -->

<xs:element name="analyze-string" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:sequence>
 <xs:element ref="xsl:matching-substring" minOccurs="0"/>
 <xs:element ref="xsl:non-matching-substring" minOccurs="0"/>
 <xs:element ref="xsl:fallback" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="select" type="xsl:expression" use="required"/>
 <xs:attribute name="regex" type="xsl:avt" use="required"/>
 <xs:attribute name="flags" type="xsl:avt" default=""/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="apply-imports" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:sequence>
 <xs:element ref="xsl:with-param" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>

Page 152 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 </xs:complexType>
</xs:element>

<xs:element name="apply-templates" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xsl:sort"/>
 <xs:element ref="xsl:with-param"/>
 </xs:choice>
 <xs:attribute name="select" type="xsl:expression" default="child::node()"/>
 <xs:attribute name="mode" type="xsl:mode"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="attribute" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="name" type="xsl:avt" use="required"/>
 <xs:attribute name="namespace" type="xsl:avt"/>
 <xs:attribute name="select" type="xsl:expression"/>
 <xs:attribute name="separator" type="xsl:avt"/>
 <xs:attribute name="type" type="xsl:QName"/>
 <xs:attribute name="validation" type="xsl:validation-type"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="attribute-set" substitutionGroup="xsl:declaration">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xsl:attribute"/>
 </xs:sequence>
 <xs:attribute name="name" type="xsl:QName" use="required"/>
 <xs:attribute name="use-attribute-sets" type="xsl:QNames" default=""/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="call-template" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:sequence>
 <xs:element ref="xsl:with-param" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xsl:QName" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="character-map" substitutionGroup="xsl:declaration">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:sequence>
 <xs:element ref="xsl:output-character" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xsl:QName" use="required"/>
 <xs:attribute name="use-character-maps" type="xsl:QNames" default=""/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="choose" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:sequence>
 <xs:element ref="xsl:when" maxOccurs="unbounded"/>
 <xs:element ref="xsl:otherwise" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="comment" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="select" type="xsl:expression"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="copy" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="copy-namespaces" type="xsl:yes-or-no" default="yes"/>
 <xs:attribute name="inherit-namespaces" type="xsl:yes-or-no" default="yes"/>

Page 153 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 <xs:attribute name="use-attribute-sets" type="xsl:QNames" default=""/>
 <xs:attribute name="type" type="xsl:QName"/>
 <xs:attribute name="validation" type="xsl:validation-type"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="copy-of" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:versioned-element-type">
 <xs:attribute name="select" type="xsl:expression" use="required"/>
 <xs:attribute name="copy-namespaces" type="xsl:yes-or-no" default="yes"/>
 <xs:attribute name="type" type="xsl:QName"/>
 <xs:attribute name="validation" type="xsl:validation-type"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="decimal-format" substitutionGroup="xsl:declaration">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:attribute name="name" type="xsl:QName"/>
 <xs:attribute name="decimal-separator" type="xsl:char" default="."/>
 <xs:attribute name="grouping-separator" type="xsl:char" default=","/>
 <xs:attribute name="infinity" type="xs:string" default="Infinity"/>
 <xs:attribute name="minus-sign" type="xsl:char" default="-"/>
 <xs:attribute name="NaN" type="xs:string" default="NaN"/>
 <xs:attribute name="percent" type="xsl:char" default="%"/>
 <xs:attribute name="per-mille" type="xsl:char" default="‰"/>
 <xs:attribute name="zero-digit" type="xsl:char" default="0"/>
 <xs:attribute name="digit" type="xsl:char" default="#"/>
 <xs:attribute name="pattern-separator" type="xsl:char" default=";"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="element" substitutionGroup="xsl:instruction">
 <xs:complexType mixed="true">
 <xs:complexContent>
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="name" type="xsl:avt" use="required"/>
 <xs:attribute name="namespace" type="xsl:avt"/>
 <xs:attribute name="inherit-namespaces" type="xsl:yes-or-no" default="yes"/>
 <xs:attribute name="use-attribute-sets" type="xsl:QNames" default=""/>
 <xs:attribute name="type" type="xsl:QName"/>
 <xs:attribute name="validation" type="xsl:validation-type"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="fallback" substitutionGroup="xsl:instruction" type="xsl:sequence-constructor"/>

<xs:element name="for-each" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:versioned-element-type">
 <xs:sequence>
 <xs:element ref="xsl:sort" minOccurs="0" maxOccurs="unbounded"/>
 <xs:group ref="xsl:sequence-constructor-group" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="select" type="xsl:expression" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="for-each-group" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:versioned-element-type">
 <xs:sequence>
 <xs:element ref="xsl:sort" minOccurs="0" maxOccurs="unbounded"/>
 <xs:group ref="xsl:sequence-constructor-group" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="select" type="xsl:expression" use="required"/>
 <xs:attribute name="group-by" type="xsl:expression"/>
 <xs:attribute name="group-adjacent" type="xsl:expression"/>
 <xs:attribute name="group-starting-with" type="xsl:pattern"/>
 <xs:attribute name="group-ending-with" type="xsl:pattern"/>
 <xs:attribute name="collation" type="xs:anyURI"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="function" substitutionGroup="xsl:declaration">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:versioned-element-type">
 <xs:sequence>
 <xs:element ref="xsl:param" minOccurs="0" maxOccurs="unbounded"/>
 <xs:group ref="xsl:sequence-constructor-group" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xsl:QName" use="required"/>
 <xs:attribute name="override" type="xsl:yes-or-no" default="yes"/>
 <xs:attribute name="as" type="xsl:sequence-type" default="item()*"/>
 </xs:extension>

Page 154 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="if" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="test" type="xsl:expression" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="import">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="import-schema" substitutionGroup="xsl:declaration">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:sequence>
 <xs:element ref="xs:schema" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="namespace" type="xs:anyURI"/>
 <xs:attribute name="schema-location" type="xs:anyURI"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="include" substitutionGroup="xsl:declaration">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="key" substitutionGroup="xsl:declaration">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="name" type="xsl:QName" use="required"/>
 <xs:attribute name="match" type="xsl:pattern" use="required"/>
 <xs:attribute name="use" type="xsl:expression"/>
 <xs:attribute name="collation" type="xs:anyURI"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="matching-substring" type="xsl:sequence-constructor"/>

<xs:element name="message" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="select" type="xsl:expression"/>
 <xs:attribute name="terminate" type="xsl:avt" default="no"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="namespace" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="name" type="xsl:avt" use="required"/>
 <xs:attribute name="select" type="xsl:expression"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="namespace-alias" substitutionGroup="xsl:declaration">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:attribute name="stylesheet-prefix" type="xsl:prefix-or-default" use="required"/>
 <xs:attribute name="result-prefix" type="xsl:prefix-or-default" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="next-match" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xsl:with-param"/>
 <xs:element ref="xsl:fallback"/>

Page 155 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 </xs:choice>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="non-matching-substring" type="xsl:sequence-constructor"/>

<xs:element name="number" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:versioned-element-type">
 <xs:attribute name="value" type="xsl:expression"/>
 <xs:attribute name="select" type="xsl:expression"/>
 <xs:attribute name="level" type="xsl:level" default="single"/>
 <xs:attribute name="count" type="xsl:pattern"/>
 <xs:attribute name="from" type="xsl:pattern"/>
 <xs:attribute name="format" type="xsl:avt" default="1"/>
 <xs:attribute name="lang" type="xsl:avt"/>
 <xs:attribute name="letter-value" type="xsl:avt"/>
 <xs:attribute name="ordinal" type="xsl:avt"/>
 <xs:attribute name="grouping-separator" type="xsl:avt"/>
 <xs:attribute name="grouping-size" type="xsl:avt"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="otherwise" type="xsl:sequence-constructor"/>

<xs:element name="output" substitutionGroup="xsl:declaration">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:generic-element-type">
 <xs:attribute name="name" type="xsl:QName"/>
 <xs:attribute name="method" type="xsl:method"/>
 <xs:attribute name="byte-order-mark" type="xsl:yes-or-no"/>
 <xs:attribute name="cdata-section-elements" type="xsl:QNames"/>
 <xs:attribute name="doctype-public" type="xs:string"/>
 <xs:attribute name="doctype-system" type="xs:string"/>
 <xs:attribute name="encoding" type="xs:string"/>
 <xs:attribute name="escape-uri-attributes" type="xsl:yes-or-no"/>
 <xs:attribute name="include-content-type" type="xsl:yes-or-no"/>
 <xs:attribute name="indent" type="xsl:yes-or-no"/>
 <xs:attribute name="media-type" type="xs:string"/>
 <xs:attribute name="normalization-form" type="xs:NMTOKEN"/>
 <xs:attribute name="omit-xml-declaration" type="xsl:yes-or-no"/>
 <xs:attribute name="standalone" type="xsl:yes-or-no-or-omit"/>
 <xs:attribute name="undeclare-prefixes" type="xsl:yes-or-no"/>
 <xs:attribute name="use-character-maps" type="xsl:QNames"/>
 <xs:attribute name="version" type="xs:NMTOKEN"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="output-character">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:attribute name="character" type="xsl:char" use="required"/>
 <xs:attribute name="string" type="xs:string" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="param">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="name" type="xsl:QName" use="required"/>
 <xs:attribute name="select" type="xsl:expression"/>
 <xs:attribute name="as" type="xsl:sequence-type"/>
 <xs:attribute name="required" type="xsl:yes-or-no"/>
 <xs:attribute name="tunnel" type="xsl:yes-or-no"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="perform-sort" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:versioned-element-type">
 <xs:sequence>
 <xs:element ref="xsl:sort" minOccurs="1" maxOccurs="unbounded"/>
 <xs:group ref="xsl:sequence-constructor-group" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="select" type="xsl:expression"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="preserve-space" substitutionGroup="xsl:declaration">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:attribute name="elements" type="xsl:nametests" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

Page 156 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

</xs:element>

<xs:element name="processing-instruction" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="name" type="xsl:avt" use="required"/>
 <xs:attribute name="select" type="xsl:expression"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="result-document" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="format" type="xsl:avt"/>
 <xs:attribute name="href" type="xsl:avt"/>
 <xs:attribute name="type" type="xsl:QName"/>
 <xs:attribute name="validation" type="xsl:validation-type"/>
 <xs:attribute name="method" type="xsl:avt"/>
 <xs:attribute name="byte-order-mark" type="xsl:avt"/>
 <xs:attribute name="cdata-section-elements" type="xsl:avt"/>
 <xs:attribute name="doctype-public" type="xsl:avt"/>
 <xs:attribute name="doctype-system" type="xsl:avt"/>
 <xs:attribute name="encoding" type="xsl:avt"/>
 <xs:attribute name="escape-uri-attributes" type="xsl:avt"/>
 <xs:attribute name="include-content-type" type="xsl:avt"/>
 <xs:attribute name="indent" type="xsl:avt"/>
 <xs:attribute name="media-type" type="xsl:avt"/>
 <xs:attribute name="normalization-form" type="xsl:avt"/>
 <xs:attribute name="omit-xml-declaration" type="xsl:avt"/>
 <xs:attribute name="standalone" type="xsl:avt"/>
 <xs:attribute name="undeclare-prefixes" type="xsl:avt"/>
 <xs:attribute name="use-character-maps" type="xsl:QNames"/>
 <xs:attribute name="output-version" type="xsl:avt"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="sequence" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="select" type="xsl:expression"/>
 <xs:attribute name="as" type="xsl:sequence-type"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="sort">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="select" type="xsl:expression"/>
 <xs:attribute name="lang" type="xsl:avt"/>
 <xs:attribute name="data-type" type="xsl:avt" default="text"/>
 <xs:attribute name="order" type="xsl:avt" default="ascending"/>
 <xs:attribute name="case-order" type="xsl:avt"/>
 <xs:attribute name="collation" type="xsl:avt"/>
 <xs:attribute name="stable" type="xsl:yes-or-no"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="strip-space" substitutionGroup="xsl:declaration">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:element-only-versioned-element-type">
 <xs:attribute name="elements" type="xsl:nametests" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="stylesheet" substitutionGroup="xsl:transform"/>

<xs:element name="template" substitutionGroup="xsl:declaration">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:versioned-element-type">
 <xs:sequence>
 <xs:element ref="xsl:param" minOccurs="0" maxOccurs="unbounded"/>
 <xs:group ref="xsl:sequence-constructor-group" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="match" type="xsl:pattern"/>
 <xs:attribute name="priority" type="xs:decimal"/>
 <xs:attribute name="mode" type="xsl:modes"/>
 <xs:attribute name="name" type="xsl:QName"/>
 <xs:attribute name="as" type="xsl:sequence-type" default="item()*"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:complexType name="text-element-base-type">
 <xs:simpleContent>
 <xs:restriction base="xsl:versioned-element-type">
 <xs:simpleType>

Page 157 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:simpleContent>
</xs:complexType>

<xs:element name="text" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xsl:text-element-base-type">
 <xs:attribute name="disable-output-escaping" type="xsl:yes-or-no" default="no"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

<xs:complexType name="transform-element-base-type">
 <xs:complexContent>
 <xs:restriction base="xsl:element-only-versioned-element-type">
 <xs:attribute name="version" type="xs:decimal" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>

<xs:element name="transform">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xsl:transform-element-base-type">
 <xs:sequence>
 <xs:element ref="xsl:import" minOccurs="0" maxOccurs="unbounded"/>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xsl:declaration"/>
 <xs:element ref="xsl:variable"/>
 <xs:element ref="xsl:param"/>
 <xs:any namespace="##other" processContents="lax"/> <!-- weaker than XSLT 1.0 -->
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:attribute name="default-validation" type="xsl:validation-strip-or-preserve" default="strip"/>
 <xs:attribute name="input-type-annotations" type="xsl:input-type-annotations-type" default="unspecified"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="value-of" substitutionGroup="xsl:instruction">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="select" type="xsl:expression"/>
 <xs:attribute name="separator" type="xsl:avt"/>
 <xs:attribute name="disable-output-escaping" type="xsl:yes-or-no" default="no"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="variable">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="name" type="xsl:QName" use="required"/>
 <xs:attribute name="select" type="xsl:expression" use="optional"/>
 <xs:attribute name="as" type="xsl:sequence-type" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="when">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="test" type="xsl:expression" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<xs:element name="with-param">
 <xs:complexType>
 <xs:complexContent mixed="true">
 <xs:extension base="xsl:sequence-constructor">
 <xs:attribute name="name" type="xsl:QName" use="required"/>
 <xs:attribute name="select" type="xsl:expression"/>
 <xs:attribute name="as" type="xsl:sequence-type"/>
 <xs:attribute name="tunnel" type="xsl:yes-or-no"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

<!-- ++ -->
<xs:annotation>
 <xs:documentation>
 PART C: definition of literal result elements

 There are three ways to define the literal result elements
 permissible in a stylesheet.

 (a) do nothing. This allows any element to be used as a literal

Page 158 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 result element, provided it is not in the XSLT namespace

 (b) declare all permitted literal result elements as members
 of the xsl:literal-result-element substitution group

 (c) redefine the model group xsl:result-elements to accommodate
 all permitted literal result elements.

 Literal result elements are allowed to take certain attributes
 in the XSLT namespace. These are defined in the attribute group
 literal-result-element-attributes, which can be included in the
 definition of any literal result element.

 </xs:documentation>
</xs:annotation>
<!-- ++ -->

<xs:element name="literal-result-element" abstract="true" type="xs:anyType"/>

<xs:attributeGroup name="literal-result-element-attributes">
 <xs:attribute name="default-collation" form="qualified" type="xsl:uri-list"/>
 <xs:attribute name="extension-element-prefixes" form="qualified" type="xsl:prefixes"/>
 <xs:attribute name="exclude-result-prefixes" form="qualified" type="xsl:prefixes"/>
 <xs:attribute name="xpath-default-namespace" form="qualified" type="xs:anyURI"/>
 <xs:attribute name="inherit-namespaces" form="qualified" type="xsl:yes-or-no" default="yes"/>
 <xs:attribute name="use-attribute-sets" form="qualified" type="xsl:QNames" default=""/>
 <xs:attribute name="use-when" form="qualified" type="xsl:expression"/>
 <xs:attribute name="version" form="qualified" type="xs:decimal"/>
 <xs:attribute name="type" form="qualified" type="xsl:QName"/>
 <xs:attribute name="validation" form="qualified" type="xsl:validation-type"/>
</xs:attributeGroup>

<xs:group name="result-elements">
 <xs:choice>
 <xs:element ref="xsl:literal-result-element"/>
 <xs:any namespace="##other" processContents="lax"/>
 <xs:any namespace="##local" processContents="lax"/>
 </xs:choice>
</xs:group>

<!-- ++ -->
<xs:annotation>
 <xs:documentation>
 PART D: definitions of simple types used in stylesheet attributes
 </xs:documentation>
</xs:annotation>
<!-- ++ -->

<xs:simpleType name="avt">
 <xs:annotation>
 <xs:documentation>
 This type is used for all attributes that allow an attribute value template.
 The general rules for the syntax of attribute value templates, and the specific
 rules for each such attribute, are described in the XSLT 2.0 Recommendation.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string"/>
</xs:simpleType>

<xs:simpleType name="char">
 <xs:annotation>
 <xs:documentation>
 A string containing exactly one character.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:length value="1"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="expression">
 <xs:annotation>
 <xs:documentation>
 An XPath 2.0 expression.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value=".+"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="input-type-annotations-type">
 <xs:annotation>
 <xs:documentation>
 Describes how type annotations in source documents are handled.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:enumeration value="preserve"/>
 <xs:enumeration value="strip"/>
 <xs:enumeration value="unspecified"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="level">
 <xs:annotation>
 <xs:documentation>
 The level attribute of xsl:number:
 one of single, multiple, or any.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:NCName">

Page 159 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 <xs:enumeration value="single"/>
 <xs:enumeration value="multiple"/>
 <xs:enumeration value="any"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="mode">
 <xs:annotation>
 <xs:documentation>
 The mode attribute of xsl:apply-templates:
 either a QName, or #current, or #default.
 </xs:documentation>
 </xs:annotation>
 <xs:union memberTypes="xsl:QName">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#default"/>
 <xs:enumeration value="#current"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
</xs:simpleType>

<xs:simpleType name="modes">
 <xs:annotation>
 <xs:documentation>
 The mode attribute of xsl:template:
 either a list, each member being either a QName or #default;
 or the value #all
 </xs:documentation>
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:list>
 <xs:simpleType>
 <xs:union memberTypes="xsl:QName">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#default"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 </xs:list>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#all"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
</xs:simpleType>

<xs:simpleType name="nametests">
 <xs:annotation>
 <xs:documentation>
 A list of NameTests, as defined in the XPath 2.0 Recommendation.
 Each NameTest is either a QName, or "*", or "prefix:*", or "*:localname"
 </xs:documentation>
 </xs:annotation>
 <xs:list>
 <xs:simpleType>
 <xs:union memberTypes="xsl:QName">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="*"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:pattern value="\i\c*:*"/>
 <xs:pattern value="*:\i\c*"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 </xs:list>
</xs:simpleType>

<xs:simpleType name="prefixes">
 <xs:list itemType="xs:NCName"/>
</xs:simpleType>

<xs:simpleType name="prefix-list-or-all">
 <xs:union memberTypes="xsl:prefix-list">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#all"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
</xs:simpleType>

<xs:simpleType name="prefix-list">
 <xs:list itemType="xsl:prefix-or-default"/>
</xs:simpleType>

<xs:simpleType name="method">
 <xs:annotation>
 <xs:documentation>
 The method attribute of xsl:output:
 Either one of the recognized names "xml", "xhtml", "html", "text",
 or a QName that must include a prefix.

Page 160 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 </xs:documentation>
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:NCName">
 <xs:enumeration value="xml"/>
 <xs:enumeration value="xhtml"/>
 <xs:enumeration value="html"/>
 <xs:enumeration value="text"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base="xsl:QName">
 <xs:pattern value="\c*:\c*"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
</xs:simpleType>

<xs:simpleType name="pattern">
 <xs:annotation>
 <xs:documentation>
 A match pattern as defined in the XSLT 2.0 Recommendation.
 The syntax for patterns is a restricted form of the syntax for
 XPath 2.0 expressions.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xsl:expression"/>
</xs:simpleType>

<xs:simpleType name="prefix-or-default">
 <xs:annotation>
 <xs:documentation>
 Either a namespace prefix, or #default.
 Used in the xsl:namespace-alias element.
 </xs:documentation>
 </xs:annotation>
 <xs:union memberTypes="xs:NCName">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#default"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
</xs:simpleType>

<xs:simpleType name="QNames">
 <xs:annotation>
 <xs:documentation>
 A list of QNames.
 Used in the [xsl:]use-attribute-sets attribute of various elements,
 and in the cdata-section-elements attribute of xsl:output
 </xs:documentation>
 </xs:annotation>
 <xs:list itemType="xsl:QName"/>
</xs:simpleType>

<xs:simpleType name="QName">
 <xs:annotation>
 <xs:documentation>
 A QName.
 This schema does not use the built-in type xs:QName, but rather defines its own
 QName type. Although xs:QName would define the correct validation on these attributes,
 a schema processor would expand unprefixed QNames incorrectly when constructing the PSVI,
 because (as defined in XML Schema errata) an unprefixed xs:QName is assumed to be in
 the default namespace, which is not the correct assumption for XSLT.
 The data type is defined as a restriction of the built-in type Name, restricted
 so that it can only contain one colon which must not be the first or last character.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:Name">
 <xs:pattern value="([^:]+:)?[^:]+"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="sequence-type">
 <xs:annotation>
 <xs:documentation>
 The description of a data type, conforming to the
 SequenceType production defined in the XPath 2.0 Recommendation
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value=".+"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="uri-list">
 <xs:list itemType="xs:anyURI"/>
</xs:simpleType>

<xs:simpleType name="validation-strip-or-preserve">
 <xs:annotation>
 <xs:documentation>
 Describes different ways of type-annotating an element or attribute.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xsl:validation-type">
 <xs:enumeration value="preserve"/>
 <xs:enumeration value="strip"/>
 </xs:restriction>
</xs:simpleType>

Page 161 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

<xs:simpleType name="validation-type">
 <xs:annotation>
 <xs:documentation>
 Describes different ways of type-annotating an element or attribute.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:enumeration value="strict"/>
 <xs:enumeration value="lax"/>
 <xs:enumeration value="preserve"/>
 <xs:enumeration value="strip"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="yes-or-no">
 <xs:annotation>
 <xs:documentation>
 One of the values "yes" or "no".
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:enumeration value="yes"/>
 <xs:enumeration value="no"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="yes-or-no-or-omit">
 <xs:annotation>
 <xs:documentation>
 One of the values "yes" or "no" or "omit".
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:enumeration value="yes"/>
 <xs:enumeration value="no"/>
 <xs:enumeration value="omit"/>
 </xs:restriction>
</xs:simpleType>

</xs:schema>

H Acknowledgements (Non-Normative)

This specification was developed and approved for publication by the W3C XSL Working Group (WG). WG approval of this specification
does not necessarily imply that all WG members voted for its approval.

The chair of the XSL WG is Sharon Adler, IBM. The XSL Working Group includes two overlapping teams working on XSLT and XSL
Formatting Objects. The members of the XSL WG currently engaged in XSLT activities are:

Alternates are listed only where they have taken an active part in working group discussions. However, the group acknowledges the support
that many members receive from colleagues in their organizations, whether or not they are officially appointed as alternates.

The W3C representative on the XSL Working Group is Michael Sperberg-McQueen.

The following individuals made significant contributions to XSLT 2.0 while they were members of the Working Group, and in some cases
afterwards:

James Clark, Invited Expert
Jonathan Marsh, Microsoft
Steve Muench, Oracle
Steve Zilles, Adobe
Evan Lenz, XYZFind
Mark Scardina, Oracle
Kristoffer Rose, IBM
Henry Zongaro, IBM
Henry Thompson, University of Edinburgh

Participant Affiliation

Colin Paul Adams Invited Expert

Anders Berglund IBM

Scott Boag IBM

Michael Kay Invited Expert

Alex Milowski Invited Expert

William Peterson Novell, Inc

Michael Sperberg-McQueen W3C

Zarella Rendon Invited Expert

Jeni Tennison Invited Expert

Joanne Tong IBM

Norm Walsh Sun Microsystems Inc.

Mohamed Zergaoui Innovimax SARL

(vacancy) Oracle

Page 162 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

K Karun, Oracle

The working group wishes to acknowledge the contribution made by David Marston of IBM especially to the new specification of the format-
number function.

This specification builds on the success of the XSLT 1.0 Recommendation. For a list of contributors to XSLT 1.0, see [XSLT 1.0].

I Checklist of Requirements (Non-Normative)

This section provides a checklist of progress against the published XSLT 2.0 Requirements document (see [XSLT 2.0 Requirements]).

Requirement 1

MUST Maintain Backwards Compatibility with XSLT 1.1 [Read this as "with XSLT 1.0"]

Any stylesheet whose behavior is fully defined in XSLT 1.0 and which generates no errors will produce the same result tree under XSLT 2.0

Response

See J.1 Incompatible Changes

Requirement 2

MUST Match Elements with Null Values

A stylesheet should be able to match elements and attributes whose value is explicitly null.

Response

This has been handled as an XPath 2.0 requirement. A new function nilled FO is available to test whether an element has been marked as
nil after schema validation.

Requirement 3

SHOULD Allow Included Documents to "Encapsulate" Local Stylesheets

XSLT 2.0 SHOULD define a mechanism to allow the templates in a stylesheet associated with a secondary source document, to be imported
and used to format the included fragment, taking precedence over any applicable templates in the current stylesheet.

Response

The facility to define modes has been generalized, making it easier to define a distinct set of template rules for processing a particular
document.

Requirement 4

Could Support Accessing Infoset Items for XML Declaration

A stylesheet COULD be able to access information like the version and encoding from the XML declaration of a document.

Response

No new facilities have been provided in this area, because this information is not available in the data model.

Requirement 5

Could Provide QName Aware String Functions

Users manipulating documents (for example stylesheets, schemas) that have QName-valued element or attribute content need functions
that take a string containing a QName as their argument, convert it to an expanded-QName using either the namespace declarations in
scope at that point in the stylesheet, or the namespace declarations in scope for a specific source node, and return properties of the
expanded-QName such as its namespace URI and local name.

Response

Functions operating on QNames are included in the XPath 2.0 Functions and Operators document: see [Functions and Operators].

Requirement 6

Could Enable Constructing a Namespace with Computed Name

Provide an xsl:namespace analog to xsl:element for constructing a namespace node with a computed prefix and URI.

Response

An xsl:namespace instruction has been added: see 11.7 Creating Namespace Nodes.

Requirement 7

Could Simplify Resolving Prefix Conflicts in QName-Valued Attributes

XSLT 2.0 could simplify the renaming of conflicting namespace prefixes in result tree fragments, particularly for attributes declared in a
schema as being QNames. Once the processor knows an attribute value is a QName, an XSLT processor SHOULD be able to rename
prefixes and generate namespace declarations to preserve the semantics of that attribute value, just as it does for attribute names.

Page 163 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Response

If an attribute is typed as a QName in the schema, the new XPath 2.0 functions can be used to manipulate it as required at application level.
This is considered sufficient to meet the requirement.

Requirement 8

Could Support XHTML Output Method

Complementing the existing output methods for html, xml, and text, an xhtml output method could be provided to simplify transformations
which target XHTML output.

Response

An XHTML output method is now provided: see [XSLT and XQuery Serialization]

Requirement 9

MUST Allow Matching on Default Namespace Without Explicit Prefix

Many users stumble trying to match an element with a default namespace.

Response

A new [xsl:]xpath-default-namespace attribute is provided for this purpose: see 5.2 Unprefixed QNames in Expressions and Patterns

Requirement 10

MUST Add Date Formatting Functions

One of the more frequent requests from XSLT 1.0 users is the ability to format date information with similar control to XSLT's format-number.
XML Schema introduces several kinds of date and time datatypes which will further increase the demand for date formatting during
transformations. Functionality similar to that provided by java.text.SimpleDateFormat. A date analog of XSLT's named xsl:decimal-format
may be required to handle locale-specific date formatting issues.

Response

A set of date formatting functions has been specified: see 16.5 Formatting Dates and Times

Requirement 11

MUST Simplify Accessing Id's and Key's in Other Documents

Currently it is cumbersome to lookup nodes by id() or key() in documents other than the source document. Users MUST first use an xsl:for-
each instruction, selecting the desired document() to make it the current node, then relative XPath expressions within the scope of the
xsl:for-each can refer to id() or key() as desired.

Response

The requirement is met by the generalization of path syntax in XPath 2.0. It is now possible to use a path expression such as document
('a.xml')/id('A001').

Requirement 12

SHOULD Provide Function to Absolutize Relative URIs

There SHOULD be a way in XSLT 2.0 to create an absolute URI. The functionality SHOULD allow passing a node-set and return a string value
representing the absolute URI resolved with respect to the base URI of the current node.

Response

A function resolve-uriFO is now defined in [Functions and Operators].

Requirement 13

SHOULD Include Unparsed Text from an External Resource

Frequently stylesheets MUST import text from external resources. Today users have to resort to extension functions to accomplish this
because XSLT 1.0 only provides the document() function which, while useful, can only read external resources that are well-formed XML
documents.

Response

A function unparsed-text has been added: see 16.2 Reading Text Files

Requirement 14

SHOULD Allow Authoring Extension Functions in XSLT

As part of the XSLT 1.1 work done on extension functions, a proposal to author XSLT extension functions in XSLT itself was deferred for
reconsideration in XSLT 2.0. This would allow the functions in an extension namespace to be implemented in "pure" XSLT, without resulting
to external programming languages.

Response

Page 164 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

A solution to this requirement, the xsl:function element, is included in this specification. See 10.3 Stylesheet Functions.

Requirement 15

SHOULD Output Character Entity References Instead of Numeric Character Entities

Users have frequently requested the ability to have the output of their transformation use (named) character references instead of the
numeric character entity. The ability to control this preference as the level of the whole document is sufficient. For example, rather than
seeing in the output, the user could request to see the equivalent instead.

Response

The serialization specification gives the implementation discretion on how special characters are output. A user who wishes to force the use
of named character references can achieve this using the new xsl:character-map declaration.

Requirement 16

SHOULD Construct Entity Reference by Name

Analogous to the ability to create elements and attributes, users have expressed a desire to construct named entity references.

Response

No solution has been provided to this requirement; it is difficult, because entity references are not defined in the data model.

Requirement 17

SHOULD Support for Unicode String Normalization

For reliable string comparison of Unicode strings, users need the ability to apply Unicode normalization before comparing the strings.

Response

This requirement has been addressed by the provision of the normalize-unicodeFO function described in [Functions and Operators]. In
addition, a serialization parameter normalization-form has been added.

Requirement 18

SHOULD Standardize Extension Element Language Bindings

XSLT 1.1 undertook the standardization of language bindings for XSLT extension functions. For XSLT 2.0, analogous bindings SHOULD be
provided for extension elements [now renamed extension instructions].

Response

The XSL Working Group has decided not to pursue this requirement, and the attempt to standardize language bindings for extension
functions that appeared in the XSLT 1.1 Working Draft has now been withdrawn. The Working Group decided that language bindings would
be better published separately from the core XSLT specification.

Requirement 19

Could Improve Efficiency of Transformations on Large Documents

Many useful transformations take place on large documents consisting of thousands of repeating "sub-documents". Today transformations
over these documents are impractical due to the need to have the entire source tree in memory. Enabling "progressive" transformations,
where the processor is able to produce progressively more output as more input is received, is tantamount to avoiding the need for XSLT
processors to have random access to the entire source document. This might be accomplished by:

Identifying a core subset of XPath that does not require random access to the source tree, or

Consider a "transform all subtrees" mode where the stylesheet says, "Apply the transformation implied by this stylesheet to each node that
matches XXX, considered as the root of a separate tree, and copy all the results of these mini-transformations as separate subtrees on to
the final result tree."

Response

The Working Group observes that implementation techniques for XSLT processing have advanced considerably since this requirement was
written, and that further research developing new approaches continues both in industry and academia. In the light of these developments,
the Working Group has decided that it would be inappropriate at this stage to identify language features or subsets designed specifically to
enable progressive transformations.

Requirement 20

Could Support Reverse IDREF attributes

Given a particular value of an ID, produce a list of all elements that have an IDREF or IDREFS attribute which refers to this ID.

This functionality can be accomplished using the current <xsl:key> and key() mechanism.

Response

The idref FO function defined in [Functions and Operators] has been introduced in response to this requirement.

Requirement 21

Page 165 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Could Support Case-Insensitive Comparisons

XSLT 2.0 could expand its comparison functionality to include support for case-insensitive string comparison.

Response

This is an XPath 2.0 requirement. XPath 2.0 includes functions to convert strings to uppercase or lowercase, it also includes functions to
compare strings using a named collating sequence, which provides the option of using a collating sequence that treats uppercase and
lowercase as equal.

Requirement 22

Could Support Lexigraphic String Comparisons

We don't let users compare strings like $x > 'a'.

Response

This requirement has been addressed in XPath 2.0.

Requirement 23

Could Allow Comparing Nodes Based on Document Order

Support the ability to test whether one node comes before another in document order.

Response

This requirement has been addressed in XPath 2.0, using the operators << and >>.

Requirement 24

Could Improve Support for Unparsed Entities

In XSLT 1.0 there is an asymmetry in support for unparsed entities. They can be handled on input but not on output. In particular, there is no
way to do an identity transformation that preserves them. At a minimum we need the ability to retrieve the Public ID of an unparsed entity.

Response

A function to retrieve the public identifier of an unparsed entity has been added. However, no facilities have been provided to include
unparsed entities in a result document.

Requirement 25

Could Allow Processing a Node with the "Next Best Matching" Template

In the construction of large stylesheets for complex documents, it is often necessary to construct templates that implement special behavior
for a particular instance of an element, and then apply the normal styling for that element. Currently this is not possible because xsl:apply-
templates specifies that for any given node only a single template will be selected and instantiated.

Currently the processor determines a list of matching templates and then discards all but the one with the highest priority. In order to support
this requirement, the processor would retain the list of matching templates sorted in priority order. A new instruction, for example xsl:next-
match, in a template would simply trigger the next template in the list of matching templates. This "next best match" recursion naturally
bottoms out at the builtin template which can be seen as the lowest priority matching template for every match pattern.

Response

An xsl:next-match instruction has been added.

Requirement 26

Could Make Coercions Symmetric By Allowing Scalar to Nodeset Conversion

Presently, no datatype can be coerced or cast to a node-set. By allowing a string value to convert to a node-set, some user "gotchas" could
be avoided.

Response

The availability of sequences of strings or numbers probably meets most of the use-cases envisaged by this requirement.

Requirement 27

MUST Simplify Constructing and Copying Typed Content

It MUST be possible to construct XML Schema-typed elements and attributes. In addition, when copying an element or an attribute to the
result, it SHOULD be possible to preserve the type during the process.

Response

Facilities to validate constructed and copied element and attribute nodes are defined in this specification; these elements and attributes will
carry a type annotation indicating their XML Schema type. In addition, it is possible to specify when copying nodes whether type annotations
should be preserved or removed.

Requirement 28

Page 166 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

MUST Support Sorting Nodes Based on XML Schema Type

XSLT 1.0 supports sorting based on string-valued and number-valued expressions. XML Schema: Datatypes introduces new scalar types
(for example, date) with well-known sort orders. It MUST be possible to sort based on these extended set of scalar data types. Since XML
Schema: Datatypes does not define an ordering for complex types, this sorting support SHOULD only be considered for simple types.

SHOULD be consistent with whatever we define for the matrix of conversion and comparisons.

Response

Sorting based on any schema-defined primitive data type with a total ordering is included in this specification.

Requirement 29

Could Support Scientific Notation in Number Formatting

Several users have requested the ability to have the existing format-number() function extended to format numbers using Scientific Notation.

Response

Simple scientific formatting is now available through support for the schema-defined xs:float and xs:double data types; casting a large or
small value of these types to a string produces a representation of the value in scientific notation. The Working Group believes that this will
meet the requirement in most cases, and has therefore decided not to enhance the format-number further to introduce scientific notation.
Users with more specialized requirements can write their own functions.

Requirement 30

Could Provide Ability to Detect Whether "Rich" Schema Information is Available

A stylesheet that requires XML Schema type-related functionality could be able to test whether a "rich" Post-Schema-Validated Infoset is
available from the XML Schema processor, so that the stylesheet can provide fallback behavior or choose to exit with xsl:message
abort="yes".

Response

This requirement is satisified through the instance of operator in XPath 2.0, which allows expressions to determine the type of element and
attribute nodes, using information from the schema. The details of how these expressions behave when there is no schema are defined in
the XPath specifications.

Requirement 31

MUST Simplify Grouping

Grouping is complicated in XSLT 1.0. It MUST be possible for users to group nodes in a document based on common string-values, common
names, or common values for any other expression

In addition XSLT MUST allow grouping based on sequential position, for example selecting groups of adjacent <P> elements. Ideally it
SHOULD also make it easier to do fixed-size grouping as well, for example groups of three adjacent nodes, for laying out data in multiple
columns. For each group of nodes identified, it MUST be possible to instantiate a template for the group. Grouping MUST be "nestable" to
multiple levels so that groups of distinct nodes can be identified, then from among the distinct groups selected, further sub-grouping of
distinct node in the current group can be done.

Response

A new xsl:for-each-group instruction is provided: see 14 Grouping. In addition, many of the new functions and operators provided in XPath
2.0 make these algorithms easier to write.

J Changes from XSLT 1.0 (Non-Normative)

J.1 Incompatible Changes

This section lists all known cases where a stylesheet that was valid (produced no errors) under XSLT 1.0, and whose behavior was fully
specified by XSLT 1.0, will produce different results under XSLT 2.0.

Most of the discussion is concerned with compatibility in the absence of a schema: that is, it is assumed that the source document being
transformed has no schema when processed using XSLT 1.0, and that no schema is added when moving to XSLT 2.0. Some additional
factors that come into play when a schema is added are noted at the end of the section.

J.1.1 Tree construction: whitespace stripping

Both in XSLT 1.0 and in XSLT 2.0, the XSLT specification places no constraints on the way in which source trees are constructed. For XSLT
2.0, however, the [Data Model] specification describes explicit processes for constructing a tree from an Infoset or a PSVI, while also
permitting other processes to be used. The process described in [Data Model] has the effect of stripping whitespace text nodes from
elements declared to have element-only content. Although the XSLT 1.0 specification did not preclude such behavior, it differs from the way
that most existing XSLT 1.0 implementations work. It is RECOMMENDED that an XSLT 2.0 implementation wishing to provide maximum
interoperability and backwards compatibility should offer the user the option either to construct source trees using the processes described in
[Data Model], or alternatively to retain or remove whitespace according to the common practice of previous XSLT 1.0 implementations.

To write transformations that give the same result regardless of the whitespace stripping applied during tree construction, stylesheet authors
can:

use the xsl:strip-space declaration to remove whitespace text nodes from elements having element-only content (this has no effect if
the whitespace has already been stripped)
use instructions such as <xsl:apply-templates select="*"/> that cause only the element children of the context node to be

Page 167 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

processed, and not its text nodes.

J.1.2 Changes in Serialization Behavior

The specification of the output of serialization is more prescriptive than in XSLT 1.0. For example, the html output method is REQUIRED to
detect invalid HTML characters. Also, certain combinations of serialization parameters are now defined to be errors. Furthermore, XSLT 1.0
implementations were allowed to add additional xsl:output attributes that modified the behavior of the serializer. Some such extensions
might be non-conformant under the stricter rules of XSLT 2.0. For example, some XSLT 1.0 processors provided an extension attribute to
switch off the creation of meta elements by the html output method (a facility that is now provided as standard). A conformant XSLT 2.0
processor is not allowed to provide such extensions.

Where necessary, implementations MAY provide additional serialization methods designed to mimic more closely the behavior of specific
XSLT 1.0 serializers.

J.1.3 Backwards Compatibility Behavior

Some XSLT constructs behave differently under XSLT 2.0 depending on whether backwards compatible behavior is enabled. In these
cases, the behavior may be made compatible with XSLT 1.0 by ensuring that backwards compatible behavior is enabled (which is done
using the [xsl:]version attribute).

These constructs are as follows:

1. If the xsl:value-of instruction has no separator attribute, and the value of the select expression is a sequence of more than one
item, then under XSLT 2.0 all items in the sequence will be output, space separated, while in XSLT 1.0, all items after the first will be
discarded.

2. If the effective value of an attribute value template is a sequence of more than one item, then under XSLT 2.0 all items in the sequence
will be output, space separated, while in XSLT 1.0, all items after the first will be discarded.

3. If the expression in the value attribute of the xsl:number instruction returns a sequence of more than one item, then under XSLT 2.0 all
items in the sequence will be output, as defined by the format attribute, but under XSLT 1.0, all items after the first will be discarded. If
the sequence is empty, then under XSLT 2.0 nothing will be output (other than a prefix and suffix if requested), but under XSLT 1.0, the
output is "NaN". If the first item in the sequence cannot be converted to a number, then XSLT 2.0 signals a non-recoverable error,
while XSLT 1.0 outputs "NaN".
If the expression in the value attribute of xsl:number returns an empty sequence or a sequence including non-numeric values, an
XSLT 2.0 processor may signal a recoverable error; but with backwards compatibility enabled, it outputs NaN.

4. If the atomized value of the select attribute of the xsl:sort element is a sequence of more than one item, then under XSLT 2.0 an
error will be signaled, while in XSLT 1.0, all items after the first will be discarded.

5. If an xsl:call-template instruction supplies a parameter that does not correspond to any template parameter in the template being
called, then under XSLT 2.0 a static error is signaled, but under XSLT 1.0 the extra parameter is ignored.

6. It is normally a static error if an XPath expression contains a call to an unknown function. But when backwards compatible behavior is
enabled, this is a non-recoverable dynamic error, which occurs only if the function call is actually evaluated.

7. An XSLT 1.0 processor compared the value of the expression in the use attribute of xsl:key to the value supplied in the second
argument of the key function by converting both to strings. An XSLT 2.0 processor normally compares the values as supplied. The
XSLT 1.0 behavior is retained if any of the xsl:key elements making up the key definition enables backwards-compatible behavior.

8. If no output method is explicitly requested, and the first element node output appears to be an XHTML document element, then under
XSLT 2.0 the output method defaults to XHTML; with backwards compatibility enabled, the XML output method will be used.

Backwards compatible behavior also affects the results of certain XPath expressions, as defined in [XPath 2.0].

J.1.4 Incompatibility in the Absence of a Schema

If the source documents supplied as input to a transformation contain no type information generated from a schema then the known areas of
incompatibility are as follows. These apply whether or not backwards compatible behavior is enabled.

1. A stylesheet that specifies a version number other than 1.0 was defined in XSLT 1.0 to execute in forwards-compatible mode; if such a
stylesheet uses features that are not defined in XSLT 2.0 then errors may be signaled by an XSLT 2.0 processor that would not be
signaled by an XSLT 1.0 processor.

2. At XSLT 1.0 the system-property function, when called with a first argument of "xsl:version", returned 1.0 as a number. At XSLT 2.0
it returns "2.0" as a string. The RECOMMENDED way of testing this property is, for example, <xsl:if test="number(system-property
('xsl:version')) < 2.0">, which will work with either an XSLT 1.0 or an XSLT 2.0 processor.

3. At XSLT 2.0 it is an error to specify the mode or priority attribute on an xsl:template element having no match attribute. At XSLT 1.0
the attributes were silently ignored in this situation.

4. When an xsl:apply-templates or xsl:apply-imports instruction causes a built-in template rule to be invoked, then any parameters
that are supplied are automatically passed on to any further template rules. This did not happen in XSLT 1.0.

5. In XSLT 1.0 it was a recoverable error to create any node other than a text node while constructing the value of an attribute, comment,
or processing-instruction; the recovery action was to ignore the offending node and its content. In XSLT 2.0 this is no longer an error,
and the specified action is to atomize the node. An XSLT 2.0 processor will therefore not produce the same results as an XSLT 1.0
processor that took the error recovery action.

6. XSLT 1.0 defined a number of recoverable error conditions which in XSLT 2.0 have become non-recoverable errors. Under XSLT 1.0,
a stylesheet that triggered such errors would fail under some XSLT processors and succeed (or at any rate, continue to completion)
under others. Under XSLT 2.0 such a stylesheet will fail under all processors. Notable examples of such errors are constructing an
element or attribute with an invalid name, generating attributes as children of a document node, and generating an attribute of an
element after generating one or more children for the element. This change has been made in the interests of interoperability. In
classifying such errors as non-recoverable, the Working Group used the criterion that no stylesheet author would be likely to write code
that deliberately triggered the error and relied on the recovery action.

7. In XSLT 1.0, the semantics of tree construction were described as being top-down, in XSLT 2.0 they are described bottom up. In nearly
all cases the end result is the same. One difference arises in the case of a tree that is constructed to contain an attribute node within a
document node within an element node, using an instruction such as the following:

Example: Attribute within Document within Element
<xsl:template match="/">
 <e>

Page 168 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

 <xsl:copy>
 <xsl:attribute name="a">5</xsl:attribute>
 </xsl:copy>
 </e>
</xsl:template>

In XSLT 1.0, the xsl:copy did nothing, and the attribute a was then attached to the element e. In XSLT 2.0, an error occurs when
attaching the attribute a to the document node constructed by xsl:copy, because this happens before the resulting document node is
copied to the content of the constructed element.

8. In XSLT 1.0 it was not an error for the namespace attribute of xsl:element or xsl:attribute to evaluate to an invalid URI. Since many
XML parsers accept any string as a namespace name, this rarely caused problems. The [Data Model], however, requires the name of a
node to be an xs:QName, and the namespace part of an xs:QName is always an xs:anyURI. It is therefore now defined to be an error to
create an element or attribute node in a namespace whose name is not a valid instance of xs:anyURI. In practice, however,
implementations have some flexibility in how rigorously they validate namespace URIs.

9. It is now a static error for the stylesheet to contain two conflicting xsl:namespace-alias declarations with the same import precedence.
10. It is now a static error for an xsl:number instruction to contain both a value attribute and a level, from, or count attribute. In XSLT 1.0

the value attribute took precedence and the other attributes were silently ignored.
11. When the data-type attribute of xsl:sort has the value number, an XSLT 1.0 processor would evaluate the sort key as a string, and

convert the result to a number. An XSLT 2.0 processor evaluates the sort key as a number directly. This only affects the outcome in
cases where in XSLT 1.0, conversion of a number to a string and then back to a number does not produce the original number, as is
the case for example with the number positive infinity.

12. When the data-type attribute of xsl:sort is omitted, an XSLT 1.0 processor would convert the sort key values to strings, and sort them
as strings. An XSLT 2.0 processor will sort them according to their actual dynamic type. This means, for example, that if the sort key
component specifies <xsl:sort select="string-length(.)"/>, an XSLT 2.0 processor will do a numeric sort where an XSLT 1.0
processor would have done an alphabetic sort.

13. When the data-type attribute of xsl:sort is omitted or has the value "text", an XSLT 1.0 processor treats a sort key whose value is an
empty node-set as being equal to a sort key whose value is a zero-length string. XSLT 2.0 sorts the empty sequence before the zero-
length string. This means that if there are two sort keys, say <xsl:sort select="@a"/> and <xsl:sort select="@b"/>, then an XSLT
1.0 processor will sort the element <x b="2"/> after <x a="" b="1"/>, while an XSLT 2.0 processor will produce the opposite ordering.

14. The specification of the format-number function has been rewritten to remove the normative dependency on the Java JDK 1.1
specification. The JDK 1.1 specification left aspects of the behavior undefined; it is therefore likely that some cases will give different
results.
The ability to include literal text in the format picture enclosed in single quotes has been removed; any stylesheet that uses this feature
will need to be modified, for example to display the literal text using the concatFO function instead.

One specific difference between the XSLT 2.0 specification and a JDK-based implementation is in the handling of the negative sub-
picture. JDK releases subsequent to JDK 1.1 have added the provision: If there is an explicit negative subpattern [sub-picture], it serves
only to specify the negative prefix and suffix; the number of digits, minimal digits, and other characteristics are all the same as the
positive pattern [sub-picture]. This statement was not present in the JDK 1.1 specification, and therefore it is not necessarily how every
XSLT 1.0 implementation will behave, but it does describe the behavior of some XSLT 1.0 implementations that use the JDK directly.
This behavior is not correct in XSLT 2.0: the negative sub-picture MUST be used as written when the number is negative.

15. The recovery action has changed for the error condition where the processor cannot handle the fragment identifier in a URI passed as
an argument to the document function. XSLT 1.0 specified that the entire URI reference should be ignored. XSLT 2.0 specifies that the
fragment identifier should be ignored.

16. XSLT 1.0 allowed the URI returned by the unparsed-entity-uri function to be derived from some combination of the system identifier
and the public identifier in the source XML. XSLT 2.0 returns the system identifier as defined in the Infoset, resolved using the base URI
of the source document. A new function is provided to return the public identifier.

17. The default priority of the pattern match="/" has changed from +0.5 to -0.5. The effect of this is that if there are any template rules that
specify match="/" with an explicit user-specified priority between -0.5 and +0.5, these will now be chosen in preference to a template
rule that specifies match="/" with no explicit priority; previously such rules would never have been invoked.

18. In XSLT 1.0 it was possible to create a processing instruction in the result tree whose string value contained a leading space. However,
such leading spaces would be lost after serialization and parsing. In XSLT 2.0, any leading spaces in the string value of the processing
instruction are removed at the time the node is created.

19. At XSLT 1.0 there were no restrictions on the namespaces that could be used for the names of user-defined stylesheet objects such as
keys, variables, and named templates. In XSLT 2.0, certain namespaces (for example the XSLT namespace and the XML Schema
namespace) are reserved.

20. An erratum to XSLT 1.0 specified what has become known as "sticky disable-output-escaping": specifically, that it should be possible to
use disable-output-escaping when writing a node to a temporary tree, and that this information would be retained for use when the
same node was later copied to a final result tree and serialized. XSLT 2.0 no longer specifies this behavior (though it permits it, at the
discretion of the implementation). The use cases for this facility have been satisfied by a completely different mechanism, the concept
of character maps (see 20.1 Character Maps).

J.1.5 Compatibility in the Presence of a Schema

An XSLT 1.0 processor ignored all information about data types that might be obtained from a schema associated with a source document.
An XSLT 2.0 processor will take account of such information, unless the input-type-annotations attribute is set to strip. This may lead to a
number of differences in behavior. This section attempts only to give some examples of the kind of differences that might be expected when
schema information is made available:

Operations such as sorting will be sensitive to the data type of the items being sorted. For example, if the data type of a sort key
component is defined in the schema as a date, then in the absence of a data-type attribute on the xsl:sort element, the sequence will
be sorted in date order. With XSLT 1.0, the dates would be compared and sorted as strings.
Certain operations that are permitted on untyped data are not permitted on typed data, if the type of the data is inappropriate for the
operation. For example, the substringFO function expects its first argument to be a string. It is acceptable to supply an untyped value,
which will be automatically converted to a string, but it is not acceptable to supply a value which has been annotated (as a result of
schema processing) as an integer or a date.
When an attribute value such as colors="red green blue" is processed without a schema, the value is considered to be a single
string. When schema validation is applied, assuming the type is a list type like xs:NMTOKENS, the value will be treated as a sequence of
three strings. This affects the results of many operations, for example comparison of the value with another string. With this attribute
value, the expression contains(@colors, "green") returns true in XPath 1.0 and also in XPath 2.0 if input-type-annotations is set to
strip. In XPath 2.0, with a schema-aware processor and with input-type-annotations set to preserve, the same expression returns
false with backwards-compatibility enabled, and raises an error with backwards compatibility disabled.

Page 169 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

J.1.6 XPath 2.0 Backwards Compatibility

Information about incompatibilities between XPath 2.0 and XPath 1.0 is included in [XPath 2.0]

Incompatibilities in the specification of individual functions in the core function library are listed in [Functions and Operators]

J.2 New Functionality

This section summarizes the new functionality offered in XSLT 2.0, compared with XSLT 1.0. These are arranged in three groups. Firstly, the
changes that pervade the entire text. Secondly, the major new features introduced. And thirdly, a catalog of minor technical changes.

Changes since the November 2006 Proposed Recommendation are listed separately: see J.2.4 Changes since Proposed Recommendation.

In addition to these changes, reported errors in XSLT 1.0 have been fixed.

J.2.1 Pervasive changes

There has been significant re-arrangement of the text. More terminology definitions have been hyperlinked, and a glossary (see C
Glossary) has been added. Additional appendices summarize the error conditions and implementation-defined features of the
specification.
The specifications of many features (for example keys, xsl:number, the format-number function, the xsl:import mechanism, and the
description of attribute sets) have been rewritten to make them clearer and more precise.
Many changes have been made to support the XDM data model, notably the support for sequences as a replacement for the node-sets
of XPath 1.0. This has affected the specification of elements such as xsl:for-each, xsl:value-of, and xsl:sort, and has led to the
introduction of new instructions such as xsl:sequence.
The processing model is described differently: instead of instructions "writing to the result tree", they now return sequences of values.
This change is largely one of terminology, but it also means that it is now possible for XSLT stylesheets to manipulate arbitrary
sequences, including sequences containing parentless element or attribute nodes.
The description of the evaluation context has been changed. The concepts of current node and current node list have been replaced
by the XPath concepts of context item, context position, and context size.
With the introduction of support for XML Schema within XPath 2.0, XSLT now supports stronger data typing, while retaining backwards
compatibility. In particular, the types of variables and parameters can now be specified explicitly, and schema validation can be
invoked for result trees and for elements and attributes in temporary trees.
The description of error handling has been improved (see 2.9 Error Handling). This formalizes the difference between static and
dynamic errors, and tightens the rules that define which errors must be signaled under which conditions.
The terms implementation-defined and implementation-dependent are now defined and used consistently, and a checklist of
implementation-defined features is provided (see F Checklist of Implementation-Defined Features).

J.2.2 Major Features

XSLT 2.0 is designed to work with XPath 2.0 rather than XPath 1.0. This brings an enhanced data model with a type system based on
sequences of nodes or atomic values, support for all the built-in types defined in XML Schema, and a wide range of new functions and
operators.
The result tree fragment data-type is eliminated. A variable-binding element with content (and no as attribute) now constructs a
temporary tree, and the value of the variable is the root node of this tree (see 9.3 Values of Variables and Parameters). With an as
attribute, a variable-binding element may be used to construct an arbitrary sequence. These features eliminate the need for the
xx:node-set extension function provided by many XSLT 1.0 implementations.
Facilities are introduced for grouping of nodes (the xsl:for-each-group instruction, and the current-group() and current-grouping-
key() functions). See 14 Grouping
It is now possible to create user-defined functions within the stylesheet, that can be called from XPath expressions. See 10.3
Stylesheet Functions.
A transformation is allowed to produce multiple result trees. See 19.1 Creating Final Result Trees.
A new instruction xsl:analyze-string is provided to process text by matching it against a regular expression.
It is possible to declare the types of variables and parameters, and the result types of templates and functions. The types may either be
built-in types, or user-defined types imported from a schema using a new xsl:import-schema declaration.
A stylesheet is able to attach type annotations to elements and attributes in a result tree, and also in temporary trees, and to make use
of any type annotations that exist in a source tree. Result trees and temporary trees can be validated against a schema.
A transformation may now be invoked by calling a named template. This creates the potential for a transformation to process large
collections of input documents. The input to such a transformation may be obtained using the collectionFO function defined in
[Functions and Operators], or it may be supplied as a stylesheet parameter.
Comparisons between values used for grouping, for sorting, and for keys can be performed using the rules for any supported data
type, including the ability to select named collations for performing string comparison. These complement the new facilities in XPath
2.0, which are also invoked automatically when matching template rules.
The xsl:for-each instruction is able to process any sequence, not only a sequence of nodes.
An XHTML output method has been added. The details are described in [XSLT and XQuery Serialization].
A collation attribute has been added to the xsl:sort element to allow sorting using a user-defined collation.
A new xsl:next-match is provided to allow multiple template rules to be applied to the same source node.
A new xsl:character-map declaration is available to control the serialization of individual characters. This is intended as a replacement
for some use-cases where disable-output-escaping was previously necessary.
Functions have been added for formatting dates and times. See 16.5 Formatting Dates and Times
The new facility of tunnel parameters allows parameters to be set that affect an entire phase of the transformation, without requiring
them to be passed explicitly in every template call.
Many instructions that previously constructed a value using child instructions can now alternatively construct the value using a select
attribute; and conversely, instructions that previously required a select attribute can now use child instructions.
The xsl:template declaration can now declare a template rule that applies to several different modes; and the xsl:apply-templates
instruction can cause processing to continue in the current mode.

J.2.3 Minor Changes

Page 170 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

Instead of allowing the output method complete freedom to add namespace nodes, a process of namespace fixup is applied to the
result tree before it is output; this same namespace fixup process is also applied to documents constructed using variable-binding
elements with content (see 5.7.3 Namespace Fixup).
Support for XML Base has been added.
An xsl:apply-imports element is allowed to have parameters (see 6.7 Overriding Template Rules and 10.1.1 Passing Parameters to
Templates).
Extension functions are allowed to return external objects, which do not have any of the builtin XPath types.
The specification for patterns (5.5 Patterns) has been revised to align it with the new XPath grammar. The formal semantics of patterns
has been simplified: this became possible because of the extra compositionality now available in the expression grammar. The syntax
and semantics of patterns remains essentially unchanged, except that XPath 2.0 expressions can be used within predicates.
A backwards-compatible processing mode is introduced. See 3.8 Backwards-Compatible Processing
The system-property function now always returns a string. Several new system properties have been defined. See 16.6.5 system-
property.
With <xsl:message terminate="yes">, the processor now MUST terminate processing. Previously the word SHOULD was used. See 17
Messages.
A number of new serialization parameters have been introduced.
A new instruction xsl:namespace is available, for creating namespace nodes: see 11.7 Creating Namespace Nodes.
A new instruction xsl:perform-sort is available, for returning a sorted sequence.
A new [xsl:]xpath-default-namespace attribute is available to define the default namespace for unqualified names in an XPath
expression or XSLT pattern.
The attributes [xsl:]version, [xsl:]exclude-result-prefixes, and [xsl:]extension-element-prefixes, as well as the new [xsl:]
xpath-default-namespace and [xsl:]default-collation, can be used on any XSLT element, not only on xsl:stylesheet and on
literal result elements as before. In particular, they can now be used on the xsl:template element.
A new unparsed-text function is introduced. It allows the contents of an external text file to be read as a string.
Restrictions on the use of variables within patterns and key definitions have been removed; in their place a more general statement of
the restrictions preventing circularity has been formulated. The current function may also now be used within patterns.
The built-in templates for element and document nodes now pass any supplied parameter values on to the templates that they call.
A detailed specification of the format-number function is now provided, removing the reliance on specifications in Java JDK 1.1.

J.2.4 Changes since Proposed Recommendation

The following changes have been made since publication of the Proposed Recommendation. Each change contains a reference to its
discussion and rationale, for example the relevant issue number in the W3C public Bugzilla database.

In 15.1 The xsl:analyze-string instruction, the paragraph describing the permitted contents of the instruction has been clarified. (The
sentence "Both elements are optional, and neither may appear more than once." was considered awkward). This editorial change was
made in response to a public comment made during the Candidate Recommendation phase.
In 19 Final Result Trees it was stated that the result of a transformation consisted of zero or more result trees; while 2.4 Executing a
Transformation stated (correctly) that it consisted of one or more. The former statement has been revised. A cross-reference between
the two sections has been added for clarification. (Bugzilla 4031)
Some trivial syntax errors in examples have been fixed. (Bugzilla 4149)

The Proposed Recommendation contains a complete list of published working drafts prepared during the development of this specification,
and a detailed history of changes may be assembled by viewing the change log present in each draft. For most of the drafts, a version is
available in which changes are visually highlighted.

Page 171 of 171XSL Transformations (XSLT) Version 2.0

9/2/2010http://www.w3.org/TR/2007/REC-xslt20-20070123/

