
SKOS Simple Knowledge Organization
System Primer
W3C Working Group Note 18 August 2009

This version:
http://www.w3.org/TR/2009/NOTE-skos-primer-20090818/

Latest version:
http://www.w3.org/TR/skos-primer

Previous version:
http://www.w3.org/TR/2009/WD-skos-primer-20090615/

Editors:
Antoine Isaac, Vrije Universiteit Amsterdam
Ed Summers, Library Of Congress

Please refer to the errata for this document, which may include some
corrections.

See also translations.

Copyright ©2009 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C
liability, trademark and document use rules apply.

Abstract

SKOS—Simple Knowledge Organization System—provides a model for
expressing the basic structure and content of concept schemes such as
thesauri, classification schemes, subject heading lists, taxonomies,
folksonomies, and other similar types of controlled vocabulary. As an
application of the Resource Description Framework (RDF), SKOS allows
concepts to be composed and published on the World Wide Web, linked with
data on the Web and integrated into other concept schemes.

This document is a user guide for those who would like to represent their
concept scheme using SKOS.

In basic SKOS, conceptual resources (concepts) are identified with URIs,
labeled with strings in one or more natural languages, documented with various
types of note, semantically related to each other in informal hierarchies and
association networks, and aggregated into concept schemes.

Page 1 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

In advanced SKOS, conceptual resources can be mapped across concept
schemes and grouped into labeled or ordered collections. Relationships can be
specified between concept labels. Finally, the SKOS vocabulary itself can be
extended to suit the needs of particular communities of practice or combined
with other modeling vocabularies.

This document is a companion to the SKOS Reference, which provides the
normative reference on SKOS.

Status of this Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C
publications and the latest revision of this technical report can be found in the
W3C technical reports index at http://www.w3.org/TR/.

This document is a Working Group Note published by the Semantic Web
Deployment Working Group, part of the W3C Semantic Web Activity. This
version is an update to the previous Working Draft of 15 June 2009. This
version includes several minor editorial changes as well as removing an
example that suggested one means to reference a system of notation (e.g. a
symbolic notation) in a label where the system of notation does not correspond
to a natural language. This suggestion was deemed inconsistent with IETF
Best Current Practice 47 on the use of tags for identifying languages. Users
should consider the SKOS Extension vocabulary for support of alternate
systems of notation.

This is a companion document to the SKOS Simple Knowledge Organization
System Reference W3C Recommendation dated 18 August 2009.

Comments on this document may be sent to public-swd-wg@w3.org; please
include the text "SKOS comment" in the subject line. All messages received at
this address are viewable in a public archive.

This document was produced by a group operating under the 5 February 2004
W3C Patent Policy. W3C maintains a public list of any patent disclosures made
in connection with the deliverables of the group; that page also includes
instructions for disclosing a patent. An individual who has actual knowledge of
a patent which the individual believes contains Essential Claim(s) must disclose
the information in accordance with section 6 of the W3C Patent Policy.

Publication as a Working Group Note does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or
obsoleted by other documents at any time. It is inappropriate to cite this
document as other than work in progress.

Page 2 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

Table of Contents

1 Introduction
2 SKOS Essentials

2.1 Concepts
2.2 Labels

2.2.1 Preferred Lexical Labels
2.2.2 Alternative Lexical Labels
2.2.3 Hidden Lexical Labels

2.3 Semantic Relationships
2.3.1 Broader/Narrower Relationships
2.3.2 Associative Relationships

2.4 Documentary Notes
2.5 Concept Schemes

3 Networking Knowledge Organization Systems on the Semantic Web
3.1 Mapping Concept Schemes
3.2 Re-using and Extending Concept Schemes
3.3 Subject Indexing and SKOS

4 Advanced SKOS: When KOSs are not Simple Anymore
4.1 Collections of Concepts
4.2 Advanced Documentation Features
4.3 Relationships between Labels
4.4 Coordinating Concepts
4.5 Transitive Hierarchies
4.6 Notations
4.7 On Specializing the SKOS Model

5 Combining SKOS with other Modeling Approaches
5.1 Use of Labels Outside of SKOS
5.2 SKOS Concepts and OWL Classes
5.3 SKOS, RDF Datasets and Information Containment

References
Acknowledgments
Appendix. Correspondences between ISO-2788/5964 and SKOS
constructs

1 Introduction

The Simple Knowledge Organization System (SKOS) is an RDF vocabulary for
representing semi-formal knowledge organization systems (KOSs), such as
thesauri, taxonomies, classification schemes and subject heading lists.
Because SKOS is based on the Resource Description Framework (RDF) [RDF-
PRIMER] these representations are machine-readable and can be exchanged
between software applications and published on the World Wide Web.

SKOS has been designed to provide a low-cost migration path for porting
existing organization systems to the Semantic Web. SKOS also provides a
lightweight, intuitive conceptual modeling language for developing and sharing
new KOSs. It can be used on its own, or in combination with more-formal

Page 3 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

languages such as the Web Ontology Language (OWL) [OWL]. SKOS can also
be seen as a bridging technology, providing the missing link between the
rigorous logical formalism of ontology languages such as OWL and the chaotic,
informal and weakly-structured world of Web-based collaboration tools, as
exemplified by social tagging applications.

The aim of SKOS is not to replace original conceptual vocabularies in their
initial context of use, but to allow them to be ported to a shared space, based
on a simplified model, enabling wider re-use and better interoperability.

1.1 About this Primer

This document is intended to help users who have a basic understanding of
RDF to represent and publish their concept schemes as SKOS data. The
Primer aims to provide introductory examples and guidance in the use of the
SKOS vocabulary.

For a systematic account of all SKOS vocabulary elements, including their
reference semantics, the reader should consult the normative SKOS Reference
[SKOS-REFERENCE]. This can be done, at the level of classes and properties,
by clicking on their occurrences in the text (e.g. skos:Concept). For an overview
of the use cases for SKOS and the elicited requirements that guided its design,
the reader should consult the SKOS Use Cases and Requirements [SKOS-
UCR].

This Primer, together with the SKOS Reference [SKOS-REFERENCE],
replaces the earlier SKOS Core Guide [SWBP-SKOS-CORE-GUIDE] and the
SKOS Core Vocabulary Specification [SWBP-SKOS-CORE-SPEC], which are
now deprecated.

The essential features of the SKOS model are explained in Section 2. Here, the
reader is presented with the set of vocabulary elements that are most
commonly used for representing KOSs. In Section 3, the reader is shown how
to add value to these representations, either by linking them together or by
relating them to other kinds of Semantic Web resources. It is expected that
many SKOS applications will employ some of the features presented in Section
3. Section 4 is focused on more-advanced representation needs, which are
likely to be required for a limited number of SKOS applications. Section 5
discusses the use of SKOS in conjunction with other modeling approaches,
specifically OWL.

About Examples in this Primer

Most of the examples in this guide are given as a serialization of RDF graphs
using the Turtle syntax for RDF [TURTLE]. Examples serialized as Turtle
appear in code lines such as:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix ex: <http://www.example.com/>.

ex:aResource ex:aProperty ex:anotherResource;

Page 4 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

 ex:anotherProperty "An RDF Literal"@en.

The above is equivalent to the following expression, in the RDF/XML reference
syntax [RDF/XML-SYNTAX]:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://www.example.com/">
<rdf:Description rdf:about="http://www.example.com/aResource">
 <ex:aProperty rdf:resource="http://www.example.com/anotherResource"/
 <ex:anotherProperty xml:lang="en">An RDF Literal</ex:anotherProperty
</rdf:Description>
</rdf:RDF>

For the sake of brevity a number of namespace declarations are omitted from
the examples. This applies to standard namespaces (SKOS, RDF/RDFS [RDF-
PRIMER], OWL [OWL] and Dublin Core [DC]) but also to the ones that are
coined for the examples. Generally, these namespaces could be declared as in
the following code:

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://www.example.com/> .
@prefix ex1: <http://www.example.com/1/> .
@prefix ex2: <http://www.example.com/2/> .

2 SKOS Essentials

This section introduces the core of the SKOS model, namely the features that
are needed to represent most KOSs, as observed in the majority of use cases
[SKOS-UCR].

In basic SKOS, conceptual resources (concepts) can be identified with URIs,
labeled with lexical strings in one or more natural languages, documented with
various types of note, semantically related to each other in informal hierarchies
and association networks and aggregated into concept schemes.

2.1 Concepts

The fundamental element of the SKOS vocabulary is the concept. Concepts
are the units of thought [WillpowerGlossary]—ideas, meanings, or (categories
of) objects and events—which underlie many knowledge organization systems
[SKOS-UCR]. As such, concepts exist in the mind as abstract entities which are
independent of the terms used to label them.

Page 5 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

SKOS introduces the class skos:Concept, which allows implementors to assert
that a given resource is a concept. This is done in two steps:

1. by creating (or reusing) a Uniform Resource Identifier (URI [URI]) to
uniquely identify the concept.

2. by asserting in RDF, using the property rdf:type, that the resource
identified by this URI is of type skos:Concept.

For example:

<http://www.example.com/animals> rdf:type skos:Concept.

This can also be represented in Turtle more compactly using the namespace
prefix ex defined above:

ex:animals rdf:type skos:Concept.

Using SKOS to publish concept schemes makes it easy to reference the
concepts in resource descriptions on the Semantic Web. Implementors are
encouraged to use HTTP URIs when minting concept URIs since they are
resolvable to representations that can be accessed using standard Web
technologies. For more information about URIs on the Semantic Web, see Cool
URIs for the Semantic Web [COOLURIS] and Best Practice Recipes for
Publishing RDF Vocabularies [RECIPES].

2.2 Labels

The first characterizations of concepts are the expressions that are used to
refer to them in natural language: their labels. SKOS provides three properties
to attach labels to conceptual resources: skos:prefLabel, skos:altLabel and
skos:hiddenLabel. Each property implies a specific status for the label it
introduces, ranging from a strong, univocal denotation relationship, to a string
to aid in lookup. These properties are formally defined as being pairwise
disjoint. This means, for example, that it is an error if a concept has a same
literal both as its preferred label and as an alternative label.

As specified in Section 5 of the SKOS Reference, skos:prefLabel,
skos:altLabel and skos:hiddenLabel provide simple labels. They are all sub-
properties of rdfs:label, and are used to link a skos:Concept to an RDF plain
literal, which is a character string (e.g. "love") combined with an optional
language tag (e.g. "en-US") [RDF-CONCEPTS].

2.2.1 Preferred Lexical Labels

The skos:prefLabel property makes it possible to assign a preferred lexical
label to a resource. Terms used as descriptors in indexing systems
[WillpowerGlossary] will for instance be represented using this property, as in
the following example:

Page 6 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

ex:animals rdf:type skos:Concept;
 skos:prefLabel "animals".

RDF plain literals are formally defined as character strings with optional
language tags. SKOS thereby enables a simple form of multilingual labeling.
This is done by using the language tag of a lexical label to restrict its scope to a
particular language. The following example illustrates how a concept is given
one preferred label in English and another in French:

ex:animals rdf:type skos:Concept;
 skos:prefLabel "animals"@en;
 skos:prefLabel "animaux"@fr.

Note that the notion of preferred label implies that a resource can only have
one such label per language tag, as explained in Section 5 of the SKOS
Reference [SKOS-REFERENCE].

Following common practice in KOS design, the preferred label of a concept
may also be used to unambiguously represent this concept within a KOS and
its applications. So even though the SKOS data model does not formally
enforce it, it is recommended that no two concepts in the same KOS be given
the same preferred lexical label for any given language tag.

2.2.2 Alternative Lexical Labels

The skos:altLabel property makes it possible to assign an alternative lexical
label to a concept. This is especially helpful when assigning labels beyond the
one that is preferred for the concept, for instance when synonyms need to be
represented:

ex:animals rdf:type skos:Concept;
 skos:prefLabel "animals"@en;
 skos:altLabel "creatures"@en;
 skos:prefLabel "animaux"@fr;
 skos:altLabel "créatures"@fr.

Note that representation of synonyms for preferred labels is not the only use for
skos:altLabel. Near-synonyms, abbreviations and acronyms can be
represented the same way:

ex:fao rdf:type skos:Concept;
 skos:prefLabel "Food and Agriculture Organization"@en;
 skos:altLabel "FAO"@en.

Note on upward posting: It is also possible to use skos:altLabel to
represent cases of upward posting [ISO-2788]. That is, when a
concept aggregates more-specialized notions that are not explicitly
introduced as concepts in the considered KOS:

ex:rocks rdf:type skos:Concept;
 skos:prefLabel "rocks"@en;
 skos:altLabel "basalt"@en;
 skos:altLabel "granite"@en;

Page 7 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

 skos:altLabel "slate"@en.

However, even though SKOS is not intended to replace existing
guides for KOS design [ISO-2788, BS8723-2], the reader should be
aware that upward posting is not recommended. A more appropriate
KOS for this domain would introduce a skos:Concept for each kind of
rock considered (basalt, granite and slate) and assert it as a narrower
concept of ex:rock.

2.2.3 Hidden Lexical Labels

A hidden lexical label, represented by means of the skos:hiddenLabel property,
is a lexical label for a resource, where a KOS designer would like that character
string to be accessible to applications performing text-based indexing and
search operations, but would not like that label to be visible otherwise. Hidden
labels may for instance be used to include misspelled variants of other lexical
labels. For example:

ex:animals rdf:type skos:Concept;
 skos:prefLabel "animaux"@fr;
 skos:altLabel "bêtes"@fr;
 skos:hiddenLabel "betes"@fr.

2.3 Semantic Relationships

In KOSs semantic relations play a crucial role for defining concepts. The
meaning of a concept is defined not just by the natural-language words in its
labels but also by its links to other concepts in the vocabulary. Mirroring the
fundamental categories of relations that are used in vocabularies such as
thesauri [ISO2788], SKOS supplies three standard properties:

skos:broader and skos:narrower enable the representation of
hierarchical links, such as the relationship between one genre and its
more specific species, or, depending on interpretations, the relationship
between one whole and its parts;
skos:related enables the representation of associative (non-hierarchical)
links, such as the relationship between one type of event and a category
of entities which typically participate in it. Another use for skos:related is
between two categories where neither is more general or more specific.
Note that skos:related enables the representation of associative (non-
hierarchical) links, which can also be used to represent part-whole links
that are not meant as hierarchical relationships.

2.3.1 Broader/Narrower Relationships

To assert that one concept is broader in meaning (i.e. more general) than
another, the skos:broader property is used. The skos:narrower property is
used to assert the inverse, namely when one concept is narrower in meaning
(i.e. more specific) than another. For example:

Page 8 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

ex:animals rdf:type skos:Concept;
 skos:prefLabel "animals"@en;
 skos:narrower ex:mammals.
ex:mammals rdf:type skos:Concept;
 skos:prefLabel "mammals"@en;
 skos:broader ex:animals.

As is often the case in KOS, a SKOS concept can be attached to several
broader concepts at the same time. For example, a concept ex:dog could have
both ex:mammals and ex:domesticatedAnimals as broader concepts.

Note on skos:broader direction: for historic reasons, the name of the
skos:broader property (the word "broader") does not provide an
explicit indication of its direction. The word "broader" should read here
as "has broader concept"; the subject of a skos:broader statement is
the more specific concept involved in the assertion and its object is the
more generic one.

Note on implicit skos:broader/skos:narrower statements: the
properties skos:broader and skos:narrower are each other's inverse.
Whenever a concept X is broader than another concept Y, then Y is a
narrower concept of X according to the SKOS data model [SKOS-
REFERENCE]. This can be useful for making SKOS representations
more efficient by limiting the information they contain. In the above
example, for instance, the statement ex:mammals skos:broader
ex:animals can be left out if, before using the concept scheme data,
an OWL reasoner is used to infer it from the statement ex:animals
skos:narrower ex:mammals.

In many cases, hierarchical relations in a concept scheme can be considered
as transitive [OWL]. If ex:animals is broader than ex:mammals, which is itself
broader than ex:cats, it makes sense to assert that ex:animals is broader than
ex:cats. However, there are "dirtier" hierarchies, especially in KOSs different
from standard well-designed thesauri, where such a feature would not be
judged appropriate. Consider for instance a case where ex2:vehicles is said to
be broader than ex2:cars, which is itself asserted to be broader than
ex2:wheels. It may be problematic if "wheels" is automatically inferred to be a
narrower concept with respect to "vehicles". SKOS anticipates such problems
by not defining skos:broader and skos:narrower as generally transitive
properties. The reader interested in representing "transitive hierarchies" is
encouraged to read Section 4.5, which presents a way to do this while retaining
compatibility with the semantics of skos:broader defined in this section.

Note on not transitive vs. intransitive: the SKOS model does not
state that skos:broader and skos:narrower are transitive. Yet this
does not imply that these properties are intransitive. Consider a
concept cats which is narrower than a concept mammals, itself
narrower than animals: one can assert that cats is narrower than
animals as well, while staying compatible with the SKOS model. Not
specifying skos:broader as transitive implies that no new
skos:broader statement can be inferred between cats and animals by

Page 9 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

applying SKOS axioms. This does not prevent the publishers of a
SKOS concept scheme from asserting hierarchical statements that
reflect a locally transitive behaviour.

Similarly, SKOS does not assume that hierarchical relations are by default
irreflexive. In many thesaurus guidelines, it is prohibited to have a concept
broader than itself. However, in specific cases beyond classical thesauri, some
reflexive skos:broader statements may occur. Consider the conversion of an
existing RDFS/OWL ontology into a SKOS concept scheme. In such a case, it
is legitimate that every rdfs:subClassOf statement will be re-interpreted as a
skos:broader statement. However, rdfs:subClassOf is a reflexive property,
which means that for every class C, the statement C rdfs:subClassOf C is true
[OWL]. In this case every concept would therefore have itself among its
broader concepts.

Not covered in basic SKOS is the distinction between types of hierarchical
relation: for example, instance-class and part-whole relationships. The
interested reader is referred to Section 4.7, which describes how to create
specializations of semantic relations to deal with this issue.

2.3.2 Associative Relationships

To assert an associative relationship between two concepts, skos:related can
be used:

ex:birds rdf:type skos:Concept;
 skos:prefLabel "birds"@en;
 skos:related ex:ornithology.
ex:ornithology rdf:type skos:Concept;
 skos:prefLabel "ornithology"@en.

As described in the SKOS Reference [SKOS-REFERENCE], the skos:related
property is symmetric [OWL]. From the above RDF graph, for instance, it
follows that ex:ornithology is the subject of a skos:related statement that has
ex:birds as an object.

Note on (non-)transitivity of skos:related: The reader should be
aware that in the SKOS data model skos:related is not defined as a
transitive property. A transitive skos:related could have unwanted
consequences, as in the following example:

ex:renaissance skos:related ex:humanism.
ex:humanism skos:related ex:philosophicalAnthropology.
ex:philosophicalAnthropology skos:related ex:philosophyOfMind.
ex:philosophyOfMind skos:related ex:cognitiveScience.

Should skos:related be transitive, ex:renaissance would be then
directly related to ex:cognitiveScence. While every individual
statement makes sense, the inferred statement may not fit what the
designer of the KOS originally intended.

Page 10 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

Note on mixing hierarchy with association: The transitive closure
of skos:broader is disjoint from skos:related. If resources A and B
are related via skos:related, there must not be a chain of
skos:broader relationships from A to B. The same holds of
skos:narrower.

2.4 Documentary Notes

Semantic relationships are crucial to the definition of concepts, as many KOS
guidelines emphasize it. However, next to these structured characterizations,
concepts sometimes have to be further defined using human-readable
("informal") documentation, such as scope notes or definitions.

SKOS provides a skos:note property for general documentation purposes.
Inspired by existing KOS guidelines, such as [ISO2788] or [BS8723-2], this
property is further specialized into skos:scopeNote, skos:definition,
skos:example, and skos:historyNote to fit more-specific types of
documentation.

skos:scopeNote supplies some, possibly partial, information about the intended
meaning of a concept, especially as an indication of how the use of a concept
is limited in indexing practice. The following example is adapted from
[ISO2788]:

ex:microwaveFrequencies skos:scopeNote
 "Used for frequencies between 1GHz to 300Ghz"@en.

skos:definition supplies a complete explanation of the intended meaning of a
concept. The following example is adapted from [ISO2788]:

ex:documentation skos:definition
 "the process of storing and retrieving information
 in all fields of knowledge"@en.

skos:example supplies an example of the use of a concept:

ex:organizationsOfScienceAndCulture skos:example
 "academies of science, general museums, world fairs"@en.

skos:historyNote describes significant changes to the meaning or the form of
a concept:

ex:childAbuse skos:historyNote
 "estab. 1975; heading was: Cruelty to children [1952-1975]"@en.

In addition to these notes that are intended for users of a concept scheme,
SKOS includes two specializations of skos:note that are useful for KOS
managers or editors: skos:editorialNote and skos:changeNote.

Page 11 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

skos:editorialNote supplies information that is an aid to administrative
housekeeping, such as reminders of editorial work still to be done, or warnings
in the event that future editorial changes might be made:

ex:doubleclick skos:editorialNote "Review this term after company merg
 complete"@en.
ex:folksonomy skos:editorialNote "Check spelling with Thomas Vander Wa

skos:changeNote documents fine-grained changes to a concept, for the
purposes of administration and maintenance:

ex:tomato skos:changeNote
 "Moved from under 'fruits' to under 'vegetables' by Horace Gray"@en.

It is important to notice that the hierarchical link between skos:note and its
different specializations allows all the documentation associated with a concept
to be retrieved in a straightforward way. Every skos:definition is a skos:note,
every skos:scopeNote is a skos:note, and so on.

As illustrated above, SKOS documentation properties can be simply used with
RDF plain literals. Section 4.2 will show that there are other possible patterns,
as the range of these properties is not be restricted to literals. One important
feature of simple literals, however, is the ability to use language tags, as done
for labeling properties. Documentation may thus be provided in multiple
languages:

ex:pineapples rdf:type skos:Concept;
 skos:prefLabel "pineapples"@en;
 skos:prefLabel "ananas"@fr;
 skos:definition "The fruit of plants of the family Bromeliaceae"@en;
 skos:definition
 "Le fruit d'une plante herbacée de la famille des broméliacées

Before concluding this section, it is important to note that other, non-SKOS
properties could be used to document concepts. The dct:creator property
from Dublin Core [DC] can for instance be used to point to a person that
created the concept:

ex:madagascarFishEagle dct:creator [foaf:name "John Smith"].

2.5 Concept Schemes

Concepts can be created and used as stand-alone entities. However,
especially in indexing practice, concepts usually come in carefully compiled
vocabularies, such as thesauri or classification schemes. SKOS offers the
means of representing such KOSs using the skos:ConceptScheme class.

The following example shows how to define a concept scheme resource
(representing a thesaurus) and to describe that resource using the dct:title
and dct:creator properties from Dublin Core [DC]:

Page 12 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

ex:animalThesaurus rdf:type skos:ConceptScheme;
 dct:title "Simple animal thesaurus";
 dct:creator ex:antoineIsaac.

Once the concept scheme resource has been created, it can be linked with the
concepts it contains using the skos:inScheme property:

ex:mammals rdf:type skos:Concept;
 skos:inScheme ex:animalThesaurus.
ex:cows rdf:type skos:Concept;
 skos:broader ex:mammals;
 skos:inScheme ex:animalThesaurus.
ex:fish rdf:type skos:Concept;
 skos:inScheme ex:animalThesaurus.

In order to provide an efficient access to the entry points of broader/narrower
concept hierarchies, SKOS defines a skos:hasTopConcept property. This
property allows one to link a concept scheme to the (possibly many) most
general concepts it contains, as in the (continued) animal thesaurus example:

ex:animalThesaurus rdf:type skos:ConceptScheme;
 skos:hasTopConcept ex:mammals;
 skos:hasTopConcept ex:fish.

Concept schemes are designed to represent traditional vocabularies, and
designers are encouraged to follow existing KOS guidelines (e.g., [ISO2788] or
[BS8723-2]) when compiling a SKOS concept scheme. For example, as
described in Section 2.2, it is recommended that no two concepts have the
same preferred lexical label in a given language when they belong to the same
concept scheme.

The reader should however be aware that there are some subtle differences
between SKOS concept schemes and "traditional" KOSs, mainly due to the
Semantic Web context for SKOS. Section 4.6 of the SKOS Reference [SKOS-
REFERENCE] gives an account of these differences. One important feature of
SKOS is that it is possible for the same concept to be linked to several concept
schemes, using the skos:inScheme property. This will be discussed in the next
section.

Finally, it is important to notice that the SKOS vocabulary only offers limited
support for containment of KOS information in a concept scheme.
skos:inScheme and skos:hasTopConcept link concept schemes and concepts.
Yet, there is no mechanism in SKOS to record that a specific statement
concerning these concepts, e.g. a skos:broader assertion, pertains to a
specific concept scheme, whereas a KOS is usually seen as consisting of both
its concepts and the links that define them. The interested reader is referred to
Section 5.3 for a discussion on this topic.

3 Networking Knowledge Organization Systems on the

Page 13 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

Semantic Web

Representing a KOS with SKOS not only serves as a publication mechanism,
but also allows it to participate in a network of concept schemes. On the
Semantic Web the true potential of data is unleashed when it is interlinked. As
concepts from different concept schemes are connected together they begin to
form a distributed, heterogeneous global concept scheme. A web of concept
schemes can serve as the foundation for new applications that allow
meaningful navigation between KOSs. This section introduces the SKOS
features that enable the interlinking of concept schemes and explains how to
relate conceptual resources to other resources on the Semantic Web.

3.1 Mapping Concept Schemes

Every SKOS concept is assigned a URI [COOLURIS], which makes it possible
to unambiguously reference a concept in any SKOS application. This can be
especially useful for establishing semantic relations between pre-existing
concepts. Such mappings are crucial for applications such as information
retrieval tools that use several KOSs at the same time, where these KOSs have
overlapping scopes and need to be semantically reconciled; examples can be
found in the SKOS Use cases and Requirements document [SKOS-UCR].

A crucial feature of mapping is the possibility to state that two concepts from
different schemes have comparable meanings, and to specify how these
meanings compare, even though they come from different contexts and
possibly follow different modeling principles [BS8723-4]. Conceptual mappings
are expected to be a key advantage of making KOSs available on the Semantic
Web using SKOS.

SKOS provides several properties that map concepts between different
concept schemes. This can be done by asserting that two concepts have a
similar meaning, using the skos:exactMatch and skos:closeMatch properties.
Two concepts from different concept schemes can also be mapped using
properties that parallel the semantic relations introduced in Section 2.3:
skos:broadMatch, skos:narrowMatch and skos:relatedMatch.

Consider the following example, where two concept schemes represent
different views on animals:

ex1:referenceAnimalScheme rdf:type skos:ConceptScheme;
 dct:title "Extensive list of animals"@en.
ex1:animal rdf:type skos:Concept;
 skos:prefLabel "animal"@en;
 skos:inScheme ex1:referenceAnimalScheme.
ex1:platypus rdf:type skos:Concept;
 skos:prefLabel "platypus"@en;
 skos:inScheme ex1:referenceAnimalScheme.

ex2:eggSellerScheme rdf:type skos:ConceptScheme;

Page 14 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

 dct:title "Obsessed egg-seller's vocabulary"@en.
ex2:eggLayingAnimals rdf:type skos:Concept;
 skos:prefLabel "animals that lay eggs"@en;
 skos:inScheme ex2:eggSellerScheme.
ex2:animals rdf:type skos:Concept;
 skos:prefLabel "animals"@en;
 skos:inScheme ex2:eggSellerScheme.
ex2:eggs rdf:type skos:Concept;
 skos:prefLabel "eggs"@en;
 skos:inScheme ex2:eggSellerScheme.

It is possible to map the concepts in ex1:referenceAnimalScheme to the
concepts in ex2:eggSellerScheme by using the mapping assertions below:

 ex1:platypus skos:broadMatch ex2:eggLayingAnimals.
 ex1:platypus skos:relatedMatch ex2:eggs.
 ex1:animal skos:exactMatch ex2:animals.

A skos:closeMatch assertion indicates that two concepts are sufficiently similar
that they can be used interchangeably in applications that consider the two
concept schemes they belong to. However, skos:closeMatch is not defined as
transitive, which prevents such similarity assessments to propagate beyond
these two schemes. If a concept ex1:A is a close match for another concept
ex2:B which is itself a close match for ex3:C, it does not follow from the SKOS
data model that ex1:A is a close match for ex3:C.

skos:exactMatch also indicates semantic similarity—it is a sub-property of
skos:closeMatch. However, it denotes an even higher degree of closeness: the
two concepts have equivalent meaning, and the link can be exploited across a
wider range of applications and schemes. skos:exactMatch is indeed transitive:
if a concept ex1:A is an exact match for another concept ex2:B which is itself an
exact match for ex3:C, it does follow from the SKOS data model that ex1:A is
an exact match for ex3:C.

Note on skos:exactMatch vs. owl:sameAs: SKOS provides
skos:exactMatch to map concepts with equivalent meaning, and
intentionally does not use owl:sameAs from the OWL ontology
language [OWL]. When two resources are linked with owl:sameAs they
are considered to be the same resource, and triples involving these
resources are merged. This does not fit what is needed in most SKOS
applications. In the above example, ex1:animal is said to be
equivalent to ex2:animals. If this equivalence relation were
represented using owl:sameAs, the following statements would hold for
ex:animal:

ex1:animal rdf:type skos:Concept;
 skos:prefLabel "animal"@en;
 skos:inScheme ex1:referenceAnimalScheme.
 skos:prefLabel "animals"@en;
 skos:inScheme ex2:eggSellerScheme.

This would make ex:animal inconsistent, as a concept cannot

Page 15 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

possess two different preferred labels in the same language. Had the
concepts been assigned other information, such as semantic
relationships to other concepts, or notes, these would be merged as
well, causing these concepts to acquire new meanings.

By convention, mapping properties are used to represent links that have the
same intended meaning as the "standard" semantic properties, but with a
different application scope. One might say that mapping relationships are less
inherent to the meaning of the concepts they involve. From the point of view of
the original designer of a mapped KOS, they might even sometimes be wrong.

Mapping properties are expected to be useful in specific applications that use
multiple, conceptually overlapping KOSs. By convention, mapping relationships
are expected to be asserted between concepts that belong to different concept
schemes.

The reader should be aware that according to the SKOS data model, the
mapping properties that "mirror" a given semantic relation property are also
sub-properties of it in the RDFS sense. For instance, skos:broadMatch is a sub-
property of skos:broader. Consequently, every assertion of skos:broadMatch
between two concepts leads by inference to asserting a skos:broader between
these concepts.

3.2 Re-using and Extending Concept Schemes

Linking concepts by means of mappings is not the only way to interlink concept
schemes. The use of URIs on the Semantic Web allows resources to be shared
and reused in a distributed fashion. As a result it is possible for a SKOS
concept to participate in several concept schemes at the same time. For
example, a SKOS publisher can choose to locally extend an existing concept
scheme by declaring any new concepts that may be needed and simply linking
to concepts that have already been defined in the existing scheme.

Extension of a KOS can be especially useful when its designers (or third-party
KOS publishers) want to achieve a better coverage of a domain or sub-domain,
while following the principles that guided the design of the existing KOS—e.g.,
by re-using some of its concepts. Explicit KOS extension and re-use can also
be used as a modularization mechanism, when a family of articulated KOSs
(for instance microthesauri that belong to an overarching vocabulary) is
designed to cover several domains and its designers want to allow specific
applications to operate on given subsets of concepts.

A new concept scheme can re-use existing concepts using the skos:inScheme
property. Consider the example below, where a first concept scheme for
animals defines a concept for "cats":

ex1:referenceAnimalScheme rdf:type skos:ConceptScheme;
 dct:title "Reference list of animals"@en.

Page 16 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

ex1:cats rdf:type skos:Concept;
 skos:prefLabel "cats"@en;
 skos:inScheme ex1:referenceAnimalScheme.

The creator of another concept scheme devoted to cat descriptions can freely
include the reference ex1:cats concept in her scheme, and then reference it as
follows:

ex2:catScheme rdf:type skos:ConceptScheme;
 dct:title "The Complete Cat Thesaurus"@en.

ex1:cats skos:inScheme ex2:catScheme.

ex2:abyssinian rdf:type skos:Concept;
 skos:prefLabel "Abyssinian Cats"@en;
 skos:broader ex1:cats;
 skos:inScheme ex2:catScheme.

ex2:siamese rdf:type skos:Concept;
 skos:prefLabel "Siamese Cats"@en;
 skos:broader ex1:cats;
 skos:inScheme ex2:catScheme.

Note that the information source defining the new concept scheme does not
replicate information about the ex1:cats concept, such as its preferred label.
Assuming ex1:cats has been published, a Semantic Web application is able to
retrieve the information for this concept by simply resolving the concept's URI
(http://www.example.com/1/cats).

Note on owl:imports and re-using KOSs: The owl:imports property
provides a mechanism for importing the assertions of one OWL
ontology into another. owl:imports may be used with SKOS
vocabularies to provide a special case of re-use/extension where a
concept scheme "imports" another concept scheme as a whole. To
continue the example above, this is achieved by including the
following statement in the source defining ex2:catScheme:

ex2:catScheme owl:imports ex1:referenceAnimalScheme.

Using owl:imports in this way has some ramifications. First, the
domain and range of owl:imports is owl:Ontology, while
skos:ConceptScheme is defined as an owl:Class. Thus asserting that a
concept scheme imports another via owl:imports leads to the
consequence that the instances of skos:conceptScheme involved in the
import are also inferred to be instances of owl:Ontology. This in turn
results in an OWL Full ontology (due to the dual use of a URI as a
class and ontology, see Section 4.2 of the OWL Semantics document
[OWL-SEMANTICS]).

Second, under the OWL Full semantics (see Section 5.3 of the OWL
Semantics [OWL-SEMANTICS]), the intended interpretation of
owl:imports is that the RDF graph retrieved from the imported URI is
added to the importing graph. Users should be aware of this, and any

Page 17 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

alternative interpretations should be avoided. In particular, there is no
logical dependency between skos:inScheme and owl:imports: the use
of owl:imports will not result in the presence of any skos:inScheme
statements other than the ones already asserted in the imported
graph. If we consider the example above, owl:imports has been used
to state that one concept scheme logically imports another. But even
though ex1:referenceAnimalScheme contains the triple

ex1:Elephant skos:inScheme ex1:referenceAnimalsScheme.

the triple

ex1:Elephant skos:inScheme ex2:catScheme.

should not be inferred to be present in the graph defining
ex2:catScheme.

If an application is concerned with practical provenance or ownership
information, additional steps may be required in order to maintain the
provenance or assert the authority of imported triples, as mentioned in
Section 5.3.

3.3 Subject Indexing and SKOS

Though formally not belonging to the features defining a KOS, the link between
a concept and the resources which are about this concept is fundamental in
many KOS applications, such as document indexing and document retrieval.
This becomes even more important in a Semantic Web context, where there is
a crucial need to annotate documents with conceptual units which define their
subject.

While the SKOS vocabulary itself does not include a mechanism for associating
an arbitrary resource with a skos:Concept, implementors can turn to other
vocabularies. Dublin Core, for instance, provides a dct:subject property [DC]:

ex1:platypus rdf:type skos:Concept;
 skos:prefLabel "platypus"@en.

<http://en.wikipedia.org/wiki/Platypus> rdf:type foaf:Document;
 dct:subject ex1:platypus.

Note that a single resource can have several subjects, and hence be involved
in several dct:subject statements. These subjects can clearly come from
different concept schemes, resulting for instance from a distributed annotation
process.

4 Advanced SKOS: When KOSs are not Simple

Page 18 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

Anymore

Beyond the above mentioned features, SKOS proposes a number of
vocabulary elements or guidelines that deal with more-advanced representation
needs, making SKOS compatible with a broad range of KOS modeling
approaches. These are especially designed to meet requirements which were
raised in the SKOS Use Cases and Requirements [SKOS-UCR], but which
were only present in a smaller number of use cases:

Grouping of concepts based on specific criteria,
Advanced documentation by means of complex resources,
Establishing relationships between labels of concepts,
Creation of complex concepts from simple ones (coordination),
Accessing transitive hierarchical relationships,
Representing notations for concepts.

This section concludes with a general note on the extensibility of the SKOS
model, paving the way for even more specialized refinements of the vocabulary
presented in this Primer.

4.1 Collections of Concepts

SKOS makes it possible to define meaningful groupings or "collections" of
concepts. Such groupings are normally rendered in thesauri as in the following
example:

milk
 <milk by source animal>
 cow milk
 goat milk
 buffalo milk

These collections can be used to represent "arrays" in thesaurus terminology,
in which the term "milk by source animal" is a "node label" [WillpowerGlossary].
There is consensus that a node label does not represent a label for a concept
in its own right. Therefore, specific entities have to be introduced to represent
them.

Labeled Collections

To correctly model such concept collection structures, SKOS introduces a
skos:Collection class. Instances of this class group specific concepts by
means of the skos:member property, as in the following example:

ex:milk rdf:type skos:Concept;
 skos:prefLabel "milk"@en.
ex:cowMilk rdf:type skos:Concept;
 skos:prefLabel "cow milk"@en;
 skos:broader ex:milk.

Page 19 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

ex:goatMilk rdf:type skos:Concept;
 skos:prefLabel "goat milk"@en;
 skos:broader ex:milk.
ex:buffaloMilk rdf:type skos:Concept;
 skos:prefLabel "buffalo milk"@en;
 skos:broader ex:milk.

_:b0 rdf:type skos:Collection;
 skos:prefLabel "milk by source animal"@en;
 skos:member ex:cowMilk;
 skos:member ex:goatMilk;
 skos:member ex:buffaloMilk.

Note that in the example above the collection was defined as a blank node, i.e.
no defined URI was allocated. URIs may be allocated to collections, but usually
this is not necessary. Also, skos:prefLabel has been used to assign a lexical
label to the Collection, as this property (as other SKOS labeling properties) can
be used with non-conceptual resources.

Ordered Collections

Sometimes it is important to capture the order of concepts in a collection, such
as when concepts are listed in alphabetical or chronological order. To define an
ordered collection of concepts the skos:OrderedCollection class is used,
together with the skos:memberList property. This property links an instance of
skos:OrderedCollection to a (possibly blank) node of type rdf:List, following
the pattern that enables the definition of RDF collections [RDF-PRIMER]. For
example:

ex:infants rdf:type skos:Concept;
 skos:prefLabel "infants"@en.
ex:children rdf:type skos:Concept;
 skos:prefLabel "children"@en.
ex:adults rdf:type skos:Concept;
 skos:prefLabel "adults"@en.

_:b0 rdf:type skos:OrderedCollection;
 skos:prefLabel "people by age"@en;
 skos:memberList _:b1.
_:b1 rdf:first ex:infants;
 rdf:rest _:b2.
_:b2 rdf:first ex:children;
 rdf:rest _:b3.
_:b3 rdf:first ex:adults;
 rdf:rest rdf:nil.

SKOS Collections, Semantic Relations and Systematic Displays

Note that, according to the SKOS data model, collections are disjoint from
concepts. It is therefore impossible to use SKOS semantic relations (see
Section 2.3) to have a collection directly fit into a SKOS semantic network. In
other words, grouping concepts into collections does not replace assertions
about the concepts' place in a concept scheme. For instance, in the above
"milk" example, all source-defined milks must be explicitly attached to a more
generic ex:milk using the skos:broader property:

Page 20 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

ex:cowMilk skos:broader ex:milk.
ex:goatMilk skos:broader ex:milk.
ex:buffaloMilk skos:broader ex:milk.

A systematic (hierarchical) display can then be generated including the concept
grouping "milk by source animal", as presented in the example introducing this
sub-section. The skos:broader hierarchy and the collection membership
information can be used for this, but the process still requires a dedicated
algorithm, the implementation of which is left to specific applications.

One may wonder whether using collections is desirable, as they add complexity
to the representations applications have to manipulate. In fact, for some cases,
e.g. when KOSs are mainly intended as navigation hierarchies, it seems more
intuitive to represent "node labels" or "guide terms" as instances of
skos:Concept, and to use normal semantic relationships for linking them to
other concepts. Take the following variant of the "milk" example:

ex3:milkBySourceAnimal rdf:type skos:Concept;
 skos:prefLabel "milk by source animal"@en;
 skos:broader ex3:milk;
 skos:narrower ex3:cowMilk;
 skos:narrower ex3:goatMilk;
 skos:narrower ex3:buffaloMilk.

The choice between the two representation options remains open, depending
on the application at hand. Readers should however be aware that not using
collections, even if that is more intuitive, may result in a harmful loss of
semantic accuracy. For many description applications, for instance, "node
labels" are entities of a really specific nature, and must not be used as object
indices alongside "normal" concepts. Representing them as mere concepts is
therefore clearly not a best practice.

4.2 Advanced Documentation Features

As shown in Section 2.4, SKOS allows concepts to be annotated by attaching
various notes to them. It is worth noticing that the SKOS Reference does not
restrict the range of resources that assertions can use in the object position.
This leads to different usage patterns, three of which are explained—and
recommended—in this document.

Documentation as an RDF literal

Here, documentation statements have simple RDF literals as objects, as
illustrated by all examples of Section 2.4. This is the simplest way to document
concepts, and it is expected to fit most common applications.

Documentation as a Related Resource Description

In this second pattern, the object of a documentation statement consists of a

Page 21 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

general non-literal RDF node—that is, a resource node (possibly blank) that
can be the subject of further RDF statements [RDF-PRIMER]. This is especially
useful to represent with RDF more information about the documentation itself,
such as its creator or creation date. This is typically done using the RDF
rdf:value utility property, as in the following example, which uses a blank node:

ex:tomato skos:changeNote [
 rdf:value "Moved from under 'fruits' to under 'vegetables'"@en;
 dct:creator ex:HoraceGray;
 dct:date "1999-01-23"
].
ex:HoraceGray rdf:type foaf:Person; foaf:name "Horace Gray".

Documentation as a Document Reference

A third option consists of introducing, as the object of a documentation
statement, the URI of a document, for instance a Web page. Note that this
pattern, closely related to the previous one, also allows the definition of further
metadata for this document using RDF:

ex:zoology skos:definition ex:zoology.txt.
ex:zoology.txt dct:creator ex:JohnSmith.

4.3 Relationships between Labels

Some applications require the creation of explicit links between the labels
associated with concepts. For example, consider the relationship between a
preferred label for a concept "Corporation" and its abbreviation "Corp." coined
as an alternative label, or a translation link between two labels in different
languages: "Cow"@en and "Vache"@fr. The use of SKOS lexical labeling
properties, e.g. skos:prefLabel, is restricted to RDF literals. Therefore these
labels cannot be the subject of an RDF statement, and a direct relationship
cannot be asserted between them.

To solve this representation issue, the SKOS vocabulary has been augmented
with an optional extension for labels, SKOS-XL [SKOS-REFERENCE]. This
extension introduces a skosxl:Label class that allows labels to be treated as
first-order RDF resources. Each instance of this class shall first be attached to
a single RDF literal via the skosxl:literalForm property. Consider the example
where the concept "Food and Agriculture Organization" is labeled by both the
official name and the acronym of the institution. The two labels can be
represented in the following way:

ex:FAOlabel1 rdf:type skosxl:Label;
 skosxl:literalForm "Food and Agriculture Organization"@en.
ex:FAOlabel2 rdf:type skosxl:Label;
 skosxl:literalForm "FAO"@en.

skosxl:Label instances can then be related to concepts using properties
(skosxl:prefLabel, skosxl:altLabel, skosxl:hiddenLabel) that mirror the

Page 22 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

standard literal-based labeling constructs. Finally, these instances can be
linked together by skosxl:labelRelation statements:

ex:FAO rdf:type skos:Concept;
 skosxl:prefLabel ex:FAOlabel1;
 skosxl:altLabel ex:FAOlabel2.
ex:FAOlabel2 skosxl:labelRelation ex:FAOlabel1.

Such a solution is however not complete: an "acronym-sensitive" application
would miss the actual information that the two labels are indeed in an acronymy
relationship. Such an application would also miss the direction of the link.
SKOS-XL users are therefore encouraged to specialize skosxl:labelRelation
so as to fit their application-specific requirements, as in the following:

ex:isAcronymOf rdfs:subPropertyOf skosxl:labelRelation.
ex:FAOlabel2 ex:isAcronymOf ex:FAOlabel1.

Note that the SKOS-XL data model ensures that using such a pattern remains
compatible with the standard SKOS labeling practice. If an instance of
skosxl:Label is attached to a concept by, say, a skosxl:altLabel statement, it
follows from the SKOS-XL data model that the literal form of the skosxl:Label
instance is related to this concept by a standard skos:altLabel statement. In
the above example, ex:FAO therefore has "FAO"@en" as alternative (literal) label.

4.4 Coordinating Concepts

Indexing practices involving thesauri and other KOSs often include the notion of
coordination. Coordination is an activity in which concepts from a KOS are
combined. In general there are two kinds of coordination: pre-coordination and
post-coordination [WillpowerGlossary]. The key distinction between the two
hinges on when the actual coordination occurs in relation to an information
retrieval event.

Pre-coordination is done prior to information retrieval, by a KOS maintainer, or
by an indexer who is using a KOS—for example, if an indexer takes two
existing concepts from a concept scheme, such as "Bicycles" and "Repairing",
and explicitly combines them with a given syntax such as "Bicycles--Repairing"
to index a particular document.

Post-coordination on the other hand is performed as part of an information
retrieval task—for example, if a given document is indexed with two distinct
concepts "Bicycles" and "Repairing" and a user decides to perform a search for
all documents that are indexed with "Bicycles" and "Repairing".

Post-coordination as an information retrieval activity lends itself to indirect
representation as a SPARQL query to access RDF data [SPARQL]. For
example, given two distinct concepts:

ex:bicycles skos:prefLabel "Bicycles"@en.

Page 23 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

ex:repairing skos:prefLabel "Repairing"@en.

one could construct a SPARQL query to return only the documents that are
indexed with both concepts

SELECT ?document
WHERE {
 ?document dct:subject ex:bicycles.
 ?document dct:subject ex:repairing.
}

However the SKOS vocabulary itself does not provide any mechanism for
expressing that a given concept consists of a pre-coordination of other
concepts. Of course it is perfectly feasible to extend SKOS to establish a
pattern for representing coordinated concepts. For example it has been
suggested that a new property such as ex:coordinationOf could be
established:

ex:coordinationOf a rdf:Property;
 rdfs:domain skos:Concept;
 rdfs:range rdf:List.

which could then be used in assertions such as:

ex:bicyclesRepairing a skos:Concept;
 ex:coordinationOf (ex:bicycles ex:repairing);
 skos:prefLabel "Bicycles--Repairing"@en.

It has also been suggested that OWL itself could be used to coordinate
concepts:

ex:bicyclesRepairing a skos:Concept;
 owl:intersectionOf (ex:bicycles ex:repairing);
 skos:prefLabel "Bicycles--Repairing"@en.

However, established patterns for pre-coordinations of this kind have not yet
emerged in the SKOS community. ex:coordinationOf (or some equivalent
extension), and the ramifications of using SKOS with OWL have not been
explored fully enough yet to warrant inclusion in the SKOS vocabulary. Rather
than commit to a design pattern that has not been proven useful, the Semantic
Web Deployment Group decided to postpone the issue of coordination, to allow
extension patterns to organically emerge as SKOS is deployed. The hope is
that as successful patterns are established, they can be published on the Web
as an extension vocabulary to SKOS and documented as a W3C Note or some
equivalent.

4.5 Transitive Hierarchies

As described in Section 2.3.1, the properties used to represent KOS
hierarchies, skos:broader and skos:narrower, are not defined as transitive. As

Page 24 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

shown in Fig. 4.5.1 (i) & (ii), this means that their semantics do not support
inferences of the type: if "animals" is broader than "mammals" and "mammals"
is broader than "cats", then "animals" is broader than "cats".

Figure 4.5.1: skos:broader is not transitive

Dotted arrows represent statements inferred from the SKOS data model.
Solid arrows represent asserted statements.

For the applications that require such semantics—for instance to perform query
expansion—SKOS features two specific properties, skos:broaderTransitive
and skos:narrowerTransitive. These are defined as transitive super-
properties of skos:broader and skos:narrower [SKOS-REFERENCE]. This
pattern enables, using a Semantic Web inferencing tool, access to the
"transitive closure" of a hierarchy expressed with skos:broader and
skos:narrower.

Consider the example of Fig. 4.5.1 (i):

ex:animals skos:prefLabel "animals"@en.
ex:mammals skos:prefLabel "mammals"@en;
 skos:broader ex:animals.
ex:cats skos:prefLabel "cats"@en;
 skos:broader ex:mammals.

When reading the above triples, a reasoner makes use the definition of
skos:broaderTransitive as a super-property of skos:broader to infer the
following statements:

ex:cats skos:broaderTransitive ex:mammals.
ex:mammals skos:broaderTransitive ex:animals.

The transitivity of skos:broaderTransitive then causes the desired statement
to be inferred:

ex:cats skos:broaderTransitive ex:animals.

These two steps are showed in the following figure:

Page 25 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

Figure 4.5.2: inferring a transitive hierarchy from asserted skos:broader
statements

Dotted arrows represent statements inferred from the SKOS data model.
Solid arrows represent asserted statements.

The use of the skos:broaderTransitive super-property allows communities of
practice to exploit transitive interpretations of hierarchical networks as they see
fit, while not interfering with the semantics of skos:broader, which cannot
enforce such transitivity. Intuitively, one can interpret skos:broader statements
as explicitly asserted direct parent links, while skos:broaderTransitive is used
to reflect more-general (and possibly indirect) ancestor relationships.

Note on supposed "transitiveness inheritance": the super-property
link between skos:broader and skos:broaderTransitive may look
counter-intuitive at first glance. Here, a non-transitive property is
defined as a child of a transitive one, while not inheriting its
transitiveness. This is however fully compliant with RDFS/OWL
semantics for rdfs:subPropertyOf [OWL]: a property P is a sub-
property of Q if and only if every time P holds between two resources,
then Q also holds between them. This does not enforce any
transitiveness inheritance: on the contrary, the set of all couples of
resources related by P (its graph), as a subset of Q's, is likely to miss
some of the couples that make Q transitive.

4.6 Notations

Some KOSs, for example classification systems such as the Universal Decimal
Classification [UDC], use notations (or captions) as the primary means of
access to the concepts they contain. Notations are symbols which are not
normally recognizable as words or sequences of words in any natural language

Page 26 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

and are thus usable independently of natural-language contexts. They are
typically composed of digits, complemented with punctuation signs and other
characters, as in the following UDC example:

512 Algebra
512.6 Special branches of algebra

SKOS allows notations to be represented in two ways, depending on the
priorities of the concept scheme publisher. The first, preferred technique is to
use the skos:notation property. This property allows a concept to be attached
to an RDF typed literal—a literal with an explicit datatype [RDF-PRIMER]. The
datatype of the literal specifies a syntax encoding scheme, which fits the usage
of notations in the concerned KOS. The value of the literal is the notation itself
(in this case the classification code itself):

ex:udc512 skos:prefLabel "Algebra"@en ;
 skos:notation "512"^^ex:UDCNotation .

Section 6.5.1 of the SKOS Reference gives more detail on how to handle
datatypes [SKOS-REFERENCE]. This approach can be especially useful if a
KOS publisher wants to provide users with processing rules that are specific to
the KOS's notation scheme. For instance, many classification systems have
specific syntax rules which allow complex notations to be decomposed, leading
to the linking of the corresponding concept to other, simpler concepts. Also, this
pattern can help creators of SKOS tools and KOS publishers who want to have
notations displayed in a dedicated way.

However, the management of such datatypes can be cumbersome. Further, the
previous pattern is not really needed when publishers consider the notations
themselves to be simple language-independent labels. In such cases, it is
possible to use one SKOS labeling property, for instance skos:prefLabel,
without any language tag, as in:

ex:udc512 skos:prefLabel "Algebra"@en ;
 skos:notation "512"^^ex:UDCNotation ;
 skos:prefLabel "512" .

Note that it is unlikely that notations represented in such a manner will benefit
from notation-specific mechanisms (such as display procedures) in SKOS
tools. By default, users should expect these notations to be treated, in
accordance with the SKOS model, as mere labels.

4.7 On Specializing the SKOS Model

SKOS is intended to serve as a common denominator between different
modeling approaches. As such, the current vocabulary specification will allow
many existing KOSs to be ported to the Semantic Web. However, the great
variety of KOS models makes it impossible to capture every detail of these
models while still retaining the first "S" ("simple") in "SKOS".

Page 27 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

Applications that require finer granularity will greatly benefit from SKOS's being
a Semantic Web vocabulary. SKOS can indeed be seamlessly extended to suit
the specific needs of a particular KOS community while retaining compatibility
with applications that are based on the core SKOS features.

This can mostly be done by specializing existing SKOS constructs into more-
specific ones. Users can create their own properties and classes and attach
them to the standard SKOS vocabulary elements by using the
rdfs:subPropertyOf and rdfs:subClassOf properties from the RDF Schema
vocabulary [RDF-PRIMER].

The example in Section 4.3 illustrates how skosxl:labelRelation can be
specialized into a semantically richer property devoted to acronym link
representation. Other uses are possible, such as creating different "flavors" of
the properties skos:broader and skos:narrower. Thesaurus standards indeed
identify a small number of kinds of hierarchical relation, such as generic, part-
whole, or instance-class [ISO2788]. The SKOS approach allows an application
designer to create new properties to capture this distinction, and to declare
them as sub-properties of skos:broader:

ex:broaderGeneric rdfs:subPropertyOf skos:broader.
ex:broaderPartitive rdfs:subPropertyOf skos:broader.
ex:broaderInstantive rdfs:subPropertyOf skos:broader.

Every ex:broaderPartitive statement between two concepts, for instance, can
be formally interpreted by a proper Semantic Web reasoning engine. This
interpretation will yield the inference of a skos:broader statement between
these concepts—a piece of information which may then be exploited by basic
SKOS tools.

Note on tampering with the SKOS vocabulary itself: In general, it
is best to avoid stating triples where a URI from the SKOS vocabulary
is in the subject position. By doing so, one may alter the SKOS data
model and introduce unwanted side effects. This may then
compromise the interoperability of vocabularies. If one wants to adapt
the behavior of the "built-in" vocabulary to specific cases, one should
first consider introducing one's own constructs as sub-classes or sub-
properties.

Of course the creators of extensions to SKOS are encouraged to publish them,
e.g., using the SKOS public mailing list (public-esw-thes@w3.org). Such
extensions might correspond to shared concerns and thus be re-usable across
different applications. In turn, re-use is likely to bring community feedback,
helping to enhance the quality of published extensions.

5 Combining SKOS with other Modeling Approaches

As seen above, SKOS is an RDF/OWL vocabulary which can be seamlessly

Page 28 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

extended to fit specific requirements. Likewise, SKOS features can also be
used on the Semantic Web as a complement to other modeling vocabularies.
This section gives examples of re-using SKOS labeling properties to describe
resources that are not necessarily SKOS concepts. It then deals with the
specific problem of articulating SKOS concepts with classes as defined by the
ontology language OWL.

Note: this section deals with the issues arising when an application
requires SKOS features to be used in coordination with other
modeling approaches. Users not having such a requirement may skip
it.

5.1 Use of Labels Outside of SKOS

It is possible to use SKOS labeling properties to label resources that are not of
type skos:Concept. Consider these triples that describe Tim Berners-Lee:

<http://www.w3.org/People/Berners-Lee/card#i> rdf:type foaf:Person;
 foaf:name "Timothy Berners-Lee";
 rdfs:label "TBL";
 skos:prefLabel "Tim Berners-Lee"@en.

An application that wishes to display a label for this resource is able to identify
"Tim Berners-Lee" as the preferred label instead of having to choose between
the equally compatible labels rdfs:label "TBL" or the foaf:name "Timothy
Berners-Lee"—these labels are compatible because foaf:name is a sub-
property of rdfs:label.

Another example is human-readable labels on classes, properties and
individuals in OWL ontologies, which are normally expressed using rdfs:label
alone. Consider the following triples that describe humans:

ex:Human rdf:type owl:Class;
 rdfs:label "human"@en;
 rdfs:label "man"@en.

An application would have difficulty determining the correct label to display to
the user since both labels have the same weight. The semantics of
skos:prefLabel allow implementors to explicitly define the preferred label for a
given resource. In general the ability to reuse vocabulary elements from SKOS
and other RDF vocabularies as needed is what gives RDF much of its
expressive power.

5.2 SKOS Concepts and OWL Classes

The SKOS Reference defines skos:Concept as an OWL class [SKOS-
REFERENCE]:

skos:Concept rdf:type owl:Class.

Page 29 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

Thus, instances of skos:Concept (e.g. ex:Painting in an art vocabulary) are in
OWL terms individuals.

ex:Painting rdf:type skos:Concept.

This raises the question whether a SKOS concept instance such as
ex:Painting can be treated as a class in its own right. For example, can users
define properties of ex:painting such as ex:support:

ex:support rdf:type owl:DatatypeProperty.
ex:support rdfs:domain ex:Painting.

One might ask the question: why would someone want to do this? Well,
conceptually a class such as skos:Concept can be seen as a metaclass: its
instances are the concepts occurring in a vocabulary. So, it is conceivable that
SKOS users want to specify class-level characteristics of SKOS concepts, for
example that paintings have supports or that cheese has a country of origin.

It should be pointed out that SKOS does not take a stance with respect to the
flavor of OWL—OWL Full or OWL-DL [OWL-REFERENCE]—to be used
together with SKOS. OWL Full users will be able to handle the situation above
by treating instances of SKOS concepts explicitly as classes, e.g. by adding
statements of the form:

ex:Painting rdf:type owl:Class.

This is possible because OWL Full does not require the sets of classes and
individuals to be disjoint. People who wish to use the DL flavor of OWL cannot
use this metamodeling mechanism, as the disjointness condition between
classes and individuals must hold for any OWL-DL ontology. The OWL-DL
users interested in linking OWL classes to SKOS concepts have to keep these
formally distinct. They can nevertheless use dedicated OWL annotation
properties to bridge them, provided they can create and use their own
extension for SKOS, as in:

ex:PaintingClass rdf:type owl:Class.
ex:PaintingConcept rdf:type skos:Concept.
ex:PaintingClass ex:correspondingConcept ex:PaintingConcept.

Note that at the time of writing, the recently started OWL Working Group [OWL-
WG] had been chartered to handle (some forms of) metamodeling within a
description-logic framework. This might allow OWL-DL users to opt for patterns
that are easier to exploit.

Summarizing, the relationship between SKOS concepts and OWL
classes/individuals is as follows:

SKOS concepts are OWL individuals;
SKOS does not take a stance on whether it must also be possible to treat
SKOS concepts as OWL classes;
The restrictions on OWL-DL prevent treating SKOS concepts as OWL

Page 30 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

classes;
There is an expectation that an ongoing OWL revision will alleviate the
latter problem by offering some form of metamodeling.

5.3 SKOS, RDF Datasets and Information Containment

In a context of networked KOSs, some applications may require the
provenance or ownership of SKOS statements to be tracked, for instance for
trust purposes. A specific issue is how to establish explicit links between a
concept scheme and every piece of information that is stated in the original
KOS it represents, including for instance semantic relationships between
concepts.

Such functionality, albeit identified as a candidate requirement [SKOS-UCR], is
currently outside the scope of SKOS. In RDF, statements comes as context-
free triples, which makes it difficult to represent containment and provenance.

However, solutions for such problems have been proposed, such as named
graphs [NAMED-GRAPHS], and the use of RDF Datasets in SPARQL
[SPARQL]. A SKOS concept scheme can be related to an RDF Dataset, or
even asserted to be such a Dataset, which enables the creation of SPARQL
queries dealing with some form of provenance or containment. Continuing the
example of Section 3.2, and assuming that ex1:referenceAnimalScheme and
ex2:catScheme have been managed as appropriate RDF Datasets (here,
named graphs), the query

SELECT ?x ?y
WHERE {
 GRAPH ex2:catScheme { ?x skos:broader ?y }
}

may return (ex2:abyssinian, ex1:cat) as a result, while this tuple would not
appear among the results of

SELECT ?x ?
WHERE {
 GRAPH ex1:referenceAnimalScheme { ?x skos:broader ?y }
}

Readers should nevertheless be aware that these mechanisms have not been
widely used at the time of writing, and that different standard practices could
emerge in the future.

References

[BS8723-2]
BS 8723-2:2005 Structured vocabularies for information retrieval. Guide.

Page 31 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

Thesauri, British Standards Institution, London, 2005.
[BS8723-4]

BS 8723-4:2007 Structured vocabularies for information retrieval. Guide.
Interoperability between vocabularies, British Standards Institution,
London, 2007.

[COOLURIS]
Cool URIs for the Semantic Web, Leo Sauermann, Richard Cyganiak,
Editors, W3C Interest Group Note, 3 December 2008. Latest version
available at http://www.w3.org/TR/cooluris/ .

[DC]
DCMI Metadata Terms, 14 January 2008. Latest version available at
http://dublincore.org/documents/dcmi-terms/ .

[ISO2788]
ISO 2788:1986 Documentation - Guidelines for the establishment and
development of monolingual thesauri. Second edition. ISO TC 46/SC 9,
1986.

[ISO5964]
ISO 5964:1985 Documentation - Guidelines for the establishment and
development of multilingual thesauri. First edition. ISO TC 46/SC 9, 1985.

[NAMED-GRAPHS]
Named graphs, provenance and trust, Jeremy Carroll, Christian Bizer,
Patrick Hayes, Patrick Stickler, WWW 2005.

[RDF/XML-SYNTAX]
RDF/XML Syntax Specification (Revised), Dave Beckett, Editor. W3C
Recommendation, 10 February 2004. Latest version available at
http://www.w3.org/TR/rdf-syntax-grammar/ .

[RECIPES]
Best Practice Recipes for Publishing RDF Vocabularies. Diego Berrueta,
Jon Phipps. W3C Working Draft, 23 January 2008. Latest version
available at http://www.w3.org/TR/swbp-vocab-pub/ .

[OWL-WG]
OWL Working Group, http://www.w3.org/2007/OWL/.

[OWL]
OWL Web Ontology Language Reference, Mike Dean, Guus Schreiber,
Editors, W3C Recommendation, 10 February 2004. Latest version
available at http://www.w3.org/TR/owl-ref/ .

[OWL-SEMANTICS]
OWL Web Ontology Language Semantics and Abstract Syntax, Peter F.
Patel-Schneider, Patrick Hayes, Ian Horrocks, Editors, W3C
Recommendation, 10 February 2004. Latest version available at
http://www.w3.org/TR/owl-semantics/ .

[RDF-PRIMER]
RDF Primer, Frank Manola, Eric Miller, Editors, W3C Recommendation,
10 February 2004. Latest version available at http://www.w3.org/TR/rdf-
primer/ .

[RDF-CONCEPTS]
Resource Description Framework (RDF): Concepts and Abstract Syntax ,
Graham Klyne, Jeremy Carroll, Editors, W3C Recommendation, 10
February 2004. Latest version available at http://www.w3.org/TR/rdf-
concepts/ .

[RFC4646]

Page 32 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

Tags for Identifying Languages, A. Phillips , M. Davis, Editors, September
2006. Available at http://www.ietf.org/rfc/rfc4646.txt .

[SWBP-SKOS-CORE-GUIDE]
SKOS Core Guide, Alistair Miles, Dan Brickley, Editors, W3C Working
Draft, 2 November 2005. Latest version available at
http://www.w3.org/TR/2005/WD-swbp-skos-core-guide-20051102/ .

[SKOS-REFERENCE]
SKOS Reference, Alistair Miles, Sean Bechhofer, Editors, W3C
Recommendation, 18 August 2009. Latest version available at
http://www.w3.org/TR/skos-reference .

[SKOS-UCR]
SKOS Use Cases and Requirements, Antoine Isaac, Jon Phipps, Daniel
Rubin, Editors, W3C Working Group Note, 18 August 2009. Latest
version available at http://www.w3.org/TR/skos-ucr .

[SPARQL]
SPARQL Query Language for RDF, Eric Prud'hommeaux, Andy
Seaborne, Editors, W3C Working Draft, 15 January 2008. Latest version
available at http://www.w3.org/TR/rdf-sparql-query/ .

[SWBP-SKOS-CORE-SPEC]
SKOS Core Vocabulary Specification, Alistair Miles, Dan Brickley,
Editors, W3C Working Draft, 2 November 2005. Available at
http://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102/ .

[SWD]
The Semantic Web Deployment Working Group,
http://www.w3.org/2006/07/SWD/ .

[TURTLE]
Turtle - Terse RDF Triple Language , David Beckett, Tim Berners-Lee.
W3C Team Submission, 14 January 2008. Latest version available at
http://www.w3.org/TeamSubmission/turtle/ .

[UDC]
UDC - Universal Decimal Classification, UDC Consortium,
http://www.udcc.org/ .

[URI]
RFC 3986 - Uniform Resource Identifiers (URI): Generic Syntax, Tim
Berners-Lee, Roy Fielding, Larry Masinter, IETF, January 2005. Available
at http://tools.ietf.org/html/rfc3986 .

[WillpowerGlossary]
Glossary of terms relating to thesauri and other forms of structured
vocabulary for information retrieval, Stella Dextre Clarke, Alan Gilchrist,
Ron Davies and Leonard Will,Willpower Information. Available at
http://www.willpowerinfo.co.uk/glossary.htm .

Acknowledgments

The authors would like to thank Alistair Miles and Dan Brickley who edited the
SKOS Core Guide (which this Primer is largely based on); as well as Tom
Baker, Guus Schreiber and Sean Bechhofer who contributed significant
portions of this text. Semantic Web Deployment Group members Tom Baker,

Page 33 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

Margherita Sini, Quentin Reul also provided extensive reviews during the
publication process.

This document is the result of extended discussions within the Semantic Web
Deployment Group as a whole. Working Group members not already
mentioned include (in alphabetical order): Ben Adida, Diego Berrueta, Jeremy
Carroll, Michael Hausenblas, Elisa Kendall, Vit Novacek, Jon Phipps, Clay
Redding, Daniel Rubin, Manu Sporny, and Ralph Swick.

Public comments (especially via the public-esw-thes@w3.org mailing list) from
the following individuals provided invaluable guidance, suggestions and
corrections: Mark van Assem, Stephen Bounds, Dan Brickley, Johan De
Smedt, Stella Dextre-Clarke, Alasdair Gray, Andrew Houghton, Simon Jupp,
Carl Mattocks, Emma McCulloch, Mikael Nilsson, Alan Ruttenberg, Aida Slavic,
Simon Spero, Doug Tudhope, Bernard Vatant, Jakob Voss, Leonard Will, Sue
Ellen Wright.

Appendix. Correspondences between ISO-2788/5964
and SKOS constructs

SKOS owes much to decades of efforts in the KOS community, in the form of
applications, guidelines and standard formats. The compatibility between the
SKOS model and two such efforts, ISO 2788 specifications for monolingual
thesauri [ISO-2788] and ISO 5964 specifications for multilingual thesauri [ISO-
5964] was specifically raised as a candidate requirement in the SKOS Use
Case and Requirements [SKOS-UCR].

SKOS does not itself specify rules on how to create concept schemes;
however, its data model reflects some KOS construction principles. The design
of its vocabulary has also been especially influenced by standard thesaurus
guidelines, as these are among the most mature proposals in the KOS field. In
particular, there are many common points between SKOS and ISO 2788/5964.
The following table summarizes the parallels and highlights ways in which the
design of SKOS varies from ISO recommendations. It is hoped that this will
help future efforts to port thesauri that follow the ISO guidelines into SKOS.

The reader should be aware that this comparison must not by any means be
interpreted as a limitation of the scope of SKOS to standard thesauri. As
already said in this document, SKOS can be used—possibly with appropriate
extensions—for other types of KOS, or thesauri that do not follow the ISO
guidelines.

KOS design
aspect

ISO 2788/5964 SKOS

concepts vs.
terms

In ISO standards,
thesauri are indexing
languages which consist

Concepts are the central modeling
primitive of SKOS. Terms in ISO
standards correspond to labels of

Page 34 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

of terms.

ISO 2788 discusses
extensively the crafting of
terms, focusing for
instance on their form.
For example, explicit
qualifiers are used to
distinguish homographs,
e.g. Crane (bird) vs.
Crane (lifting
equipment).

SKOS concepts.

SKOS, as a simple publishing
vehicle, does not propose rules on
label design. Further, since SKOS
uses simple literals to represent
labels, it is not possible to express
term-forming mechanisms such as
qualification formally and explicitly.
For this, and for other cases of
attaching information to labels and
not to the concept they express,
the SKOS-XL extension must be
used (see Section 4.3).

intra-KOS
semantic
relationships
— equivalence

Terms can be
semantically equivalent.
They are then
distinguished between
preferred and non-
preferred, using the USE
and UF (used for)
relations.

It is assumed that a non-
preferred term can only
point to one equivalent
preferred term, the latter
being the main entry
point for the concept they
both express.

Equivalent terms are represented
as labels attached to a single
concept. By default, there is no
direct relationship between these
labels. As in ISO 2788, preferred
labels are distinct from non-
preferred (alternative) ones.
However, SKOS further allows to
distinguish hidden labels.

A concept can have only one
preferred label (per language).
Inside a same concept scheme,
different concepts can however
share a preferred label, though this
is not recommended.

intra-KOS
semantic
relationships
— other links

Beyond the equivalence
relations USE and UF,
three types of link are
used to semantically
relate terms. BT (broader
term) and NT (narrower
term) express that a
term's meaning is more
general than another's.
RT (related term) is used
when a (non-hierarchical)
associative link holds
between meanings,
which can be useful for
applications which exploit
the thesaurus.

ISO 2788 separates
three kinds of BT/NT by

skos:broader, skos:narrower and
skos:related mirror BT, NT and RT
at the level of concepts.

However as SKOS has a wider
scope in terms of KOS types, it
does not make any
recommendation as precise as in
ISO 2788 on what is a valid
hierarchy. It is mostly up to the
KOS publishers to ensure that the
links in their schemes will not
conflict with what is observed in
general KOS practice—of which
thesauri are only part. SKOS
instead focuses on separating
explicitly asserted "parent-child"
links (skos:broader) from more-
general "ancestor-descendant"

Page 35 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

means of logical tests:
generic (class-species),
whole-part and class-
instance. If necessary,
the abbreviations BTG, BTP
and BTI can be used to
represent them.

The validity of logical
tests in well-formed
thesauri leads to
transitive interpretations
of the hierarchy, for which
a term can reasonably
admit all its ancestors as
superordinates.

links which can be automatically
inferred from them
(skos:broaderTransitive)

SKOS also allows for specializing
semantic relationships (see
Section 4.7). It does not, however,
propose a standard set of such
specializations. Rather, it is
expected that these will come from
other standards and guidelines,
such as ISO 2788 itself.

syntactical
composition of
terms

ISO 2788 features
equivalence relations that
link terms to
combinations of other
terms (USE +, UF +), as in
coal mining USE coal +
mining.

By default, SKOS does not feature
one-to-many concept-to-concept or
concept-to-label links. Extensions
might be however devised to
address this shortcoming, e.g. by
specializing skos:Concept or
skosxl:Label.

node labels Thesaurus arrays play an
important role regarding
the rendering of term
hierarchy in a systematic
display. They are for
example the main vehicle
for faceted organization
of thesauri.

SKOS allows the representation of
groupings of concepts. But it
focuses on the conceptual level,
and no construct is given that
biases towards a specific display
strategy. As a result, collections in
SKOS are not explicitly related to
one "parent" concept. This link
must be (re-)created via a specific
display algorithm, or by using an
ad-hoc extension.

documentation
notes

ISO 2788 proposes to
attach scope notes and
definitions to terms using
the SN abbreviation.

SKOS has more types of note for
concepts: scope notes, definition,
history note, etc. These properties
can be further extended to match
specific requirements.

notations ISO guidelines target
standard thesauri. As a
result, they do not
address the issue of
notations as used in
other types of KOS.

There are two ways to attach
represent notations: either via the
skos:notation property, or by
using simple labeling properties
(see Section 4.6).

concept
schemes

In ISO 2788, there is no
explicit rendering of
thesauri themselves, as

SKOS is influenced by the
possibility of having several KOSs
co-exist. A ConceptScheme class is

Page 36 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

terms are only
considered in the context
of one indexing
vocabulary.

proposed to represent them
explicitly and to attach descriptive
metadata to them, even though
SKOS itself does not feature
specific constructs for this. The link
between a KOS and its concepts is
explicit, and a same concept can
belong to several KOSs.

top concepts In a thesaurus display,
the TT abbreviation can
be used to refer to the
topmost term of the
hierarchy to which
displayed terms belong.

skos:hasTopConcept is used to
relate a concept scheme to the
concepts that constitute entry
points in its hierarchy.

language
management

In ISO 2788 terms should
come from a same
language.

ISO 5964 proposes to
have several languages
co-exist in a same
thesaurus. The terms
from each language form
however quite
independent parts of the
thesaurus, only related to
each other by translation
links.

From a model perspective,
concepts are language-
independent : a concept can have
labels in different languages.
Labels can indeed be declared as
language-specific, using RDF
literal language tags. Several
languages may therefore be tightly
integrated in a same concept
scheme.

inter-KOS
mapping
relationships

Semantic mapping
relations are only
considered by ISO 5964
in the context of
multilingual thesauri, as a
further characterization
for the translation. The
types discussed are:

exact equivalence,
inexact
equivalence—terms
express a same
general idea but
their meaning is not
fully identical,
partial
equivalence—the
meaning of one
term is broader than
another's,

SKOS mapping relations mirror
relatively well ISO 5964 types. For
example, skos:exactMatch and
skos:closeMatch separate cases
where equivalence is perfectly
valid from a semantic perspective
from other cases where semantic
equivalence is not exact but can
be accepted for a given
application.

For an individual multilingual KOS,
however, equivalence links in ISO
5964 may be represented in SKOS
by attaching equivalent terms as
labels of a same concept. This fits
the approach of ISO 5964, which
only makes it necessary to link
preferred terms: such links can be
transferred at the level of the
concepts these terms express. Yet

Page 37 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

single-to-multiple—
a concept
expressed by one
term in the source
language is
expressed by a
combination of
terms in the target
language.

Note that ISO 5964
addresses many issues
that are outside the
scope of SKOS, such as
transferring hierarchical
and associative relations
from one language to the
other, or coining new
terms in a language
when a semantic
equivalent cannot be
found for terms in other
languages.

ISO 5964 also allows to relate non-
preferred terms (e.g., "DNA"@en
and "ADN"@fr). In SKOS, such
links can be represented only
using the SKOS-XL extension.

Single-to-multiple translations
cannot be represented in SKOS.
As for syntactic combination of
terms within one thesaurus,
extensions to the standard model
are required.

Note finally that ISO 5964
discusses extensively the display
of multilingual thesauri. SKOS
does not address this. But as for
simple thesauri, ISO 5964 displays
can be implemented on top of
SKOS data—except in the case of
the single-to-multiple mappings
mentioned above.

Page 38 of 38SKOS Simple Knowledge Organization System Primer

18/03/2014http://www.w3.org/TR/skos-primer/

