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Abstract 

The Extensible Markup Language (XML) is a subset of SGML that is completely described in this document. Its goal is to enable 
generic SGML to be served, received, and processed on the Web in the way that is now possible with HTML. XML has been 
designed for ease of implementation and for interoperability with both SGML and HTML. 

Status of this Document 

This section describes the status of this document at the time of its publication. Other documents may supersede this document. 
A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index 
at http://www.w3.org/TR/. 

This document specifies a syntax created by subsetting an existing, widely used international text processing standard (Standard 
Generalized Markup Language, ISO 8879:1986(E) as amended and corrected) for use on the World Wide Web. It is a product of 
the XML Core Working Group as part of the XML Activity. 

On 29 September 2006 this document was edited in place to remove a number of spurious and potentially misleading spaces. 

The English version of this specification is the only normative version. However, for translations of this document, see 
http://www.w3.org/2003/03/Translations/byTechnology?technology=xml11. 

This document is a W3C Recommendation. This second edition is not a new version of XML. As a convenience to readers, it 
incorporates the changes dictated by the accumulated errata (available at http://www.w3.org/XML/xml-V11-1e-errata) to the First 
Edition of XML 1.1, dated 4 February 2004. In addition, the markup introduced to clarify when prescriptive keywords are used in 
the formal sense defined in [IETF RFC 2119], has been modified to better match the intent of [IETF RFC 2119]. This edition 
supersedes the previous W3C Recommendation of 4 February 2004. 

Please report errors in this document to the public xml-editor@w3.org mailing list; archives are available. For the convenience of 
readers, an XHTML version with color-coded revision indicators is also provided; this version highlights each change due to an 
erratum published in the errata list, together with a link to the particular erratum in that list. Most of the errata in the list provide a 
rationale for the change. The errata list for this second edition is available at http://www.w3.org/XML/xml-V11-2e-errata. 

An implementation report is available at http://www.w3.org/XML/2006/06/xml11-2e-implementation.html. A Test Suite is 
maintained to help assessing conformance to this specification. 

This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, 
and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or 
cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote 
its widespread deployment. This enhances the functionality and interoperability of the Web. 

This document is governed by the 24 January 2002 CPP as amended by the W3C Patent Policy Transition Procedure. W3C 
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maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes 
instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains 
Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy. 
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1 Introduction 

Extensible Markup Language, abbreviated XML, describes a class of data objects called XML documents and partially describes 
the behavior of computer programs which process them. XML is an application profile or restricted form of SGML, the Standard 
Generalized Markup Language [ISO 8879]. By construction, XML documents are conforming SGML documents. 

XML documents are made up of storage units called entities, which contain either parsed or unparsed data. Parsed data is made 
up of characters, some of which form character data, and some of which form markup. Markup encodes a description of the 
document's storage layout and logical structure. XML provides a mechanism to impose constraints on the storage layout and 
logical structure. 

[Definition: A software module called an XML processor is used to read XML documents and provide access to their content 
and structure.] [Definition: It is assumed that an XML processor is doing its work on behalf of another module, called the 
application.] This specification describes the required behavior of an XML processor in terms of how it must read XML data and 
the information it must provide to the application. 

1.1 Origin and Goals 

XML was developed by an XML Working Group (originally known as the SGML Editorial Review Board) formed under the 
auspices of the World Wide Web Consortium (W3C) in 1996. It was chaired by Jon Bosak of Sun Microsystems with the active 
participation of an XML Special Interest Group (previously known as the SGML Working Group) also organized by the W3C. The 
membership of the XML Working Group is given in an appendix. Dan Connolly served as the Working Group's contact with the 
W3C. 

The design goals for XML are: 

1. XML shall be straightforwardly usable over the Internet. 

2. XML shall support a wide variety of applications. 

3. XML shall be compatible with SGML. 

4. It shall be easy to write programs which process XML documents. 

5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero. 

6. XML documents should be human-legible and reasonably clear. 

7. The XML design should be prepared quickly. 

8. The design of XML shall be formal and concise. 

9. XML documents shall be easy to create. 

10. Terseness in XML markup is of minimal importance. 

This specification, together with associated standards (Unicode [Unicode] and ISO/IEC 10646 [ISO/IEC 10646] for characters, 
Internet RFC 3066 [IETF RFC 3066] for language identification tags, ISO 639 [ISO 639] for language name codes, and ISO 3166 
[ISO 3166] for country name codes), provides all the information necessary to understand XML Version 1.1 and construct 
computer programs to process it. 

This version of the XML specification may be distributed freely, as long as all text and legal notices remain intact. 

1.2 Terminology 

The terminology used to describe XML documents is defined in the body of this specification. The key words MUST, MUST NOT, 
REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when EMPHASIZED, 
are to be interpreted as described in [IETF RFC 2119]. In addition, the terms defined in the following list are used in building 
those definitions and in describing the actions of an XML processor: 

error 

[Definition: A violation of the rules of this specification; results are undefined. Unless otherwise specified, failure to observe 
a prescription of this specification indicated by one of the keywords MUST, REQUIRED, MUST NOT, SHALL and SHALL 
NOT is an error. Conforming software MAY detect and report an error and MAY recover from it.]  

fatal error 

[Definition: An error which a conforming XML processor MUST detect and report to the application. After encountering a 
fatal error, the processor MAY continue processing the data to search for further errors and MAY report such errors to the 
application. In order to support correction of errors, the processor MAY make unprocessed data from the document (with 
intermingled character data and markup) available to the application. Once a fatal error is detected, however, the processor 
MUST NOT continue normal processing (i.e., it MUST NOT continue to pass character data and information about the 
document's logical structure to the application in the normal way).]  

at user option 
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[Definition: Conforming software MAY or MUST (depending on the modal verb in the sentence) behave as described; if it 
does, it MUST provide users a means to enable or disable the behavior described.]  

validity constraint 

[Definition: A rule which applies to all valid XML documents. Violations of validity constraints are errors; they MUST, at user 
option, be reported by validating XML processors.]  

well-formedness constraint 

[Definition: A rule which applies to all well-formed XML documents. Violations of well-formedness constraints are fatal 
errors.]  

match 

[Definition: (Of strings or names:) Two strings or names being compared are identical. Characters with multiple possible 
representations in Unicode (e.g. characters with both precomposed and base+diacritic forms) match only if they have the 
same representation in both strings. No case folding is performed. (Of strings and rules in the grammar:) A string matches 
a grammatical production if it belongs to the language generated by that production. (Of content and content models:) An 
element matches its declaration when it conforms in the fashion described in the constraint [VC: Element Valid].]  

for compatibility 

[Definition: Marks a sentence describing a feature of XML included solely to ensure that XML remains compatible with 
SGML.]  

for interoperability 

[Definition: Marks a sentence describing a non-binding recommendation included to increase the chances that XML 
documents can be processed by the existing installed base of SGML processors which predate the WebSGML Adaptations 
Annex to ISO 8879.]  

1.3 Rationale and list of changes for XML 1.1 

The W3C's XML 1.0 Recommendation was first issued in 1998, and despite the issuance of many errata culminating in a Third 
Edition of 2004, has remained (by intention) unchanged with respect to what is well-formed XML and what is not. This stability 
has been extremely useful for interoperability. However, the Unicode Standard on which XML 1.0 relies for character 
specifications has not remained static, evolving from version 2.0 to version 4.0 and beyond. Characters not present in Unicode 
2.0 may already be used in XML 1.0 character data. However, they are not allowed in XML names such as element type names, 
attribute names, enumerated attribute values, processing instruction targets, and so on. In addition, some characters that should 
have been permitted in XML names were not, due to oversights and inconsistencies in Unicode 2.0. 

The overall philosophy of names has changed since XML 1.0. Whereas XML 1.0 provided a rigid definition of names, wherein 
everything that was not permitted was forbidden, XML 1.1 names are designed so that everything that is not forbidden (for a 
specific reason) is permitted. Since Unicode will continue to grow past version 4.0, further changes to XML can be avoided by 
allowing almost any character, including those not yet assigned, in names. 

In addition, XML 1.0 attempts to adapt to the line-end conventions of various modern operating systems, but discriminates 
against the conventions used on IBM and IBM-compatible mainframes. As a result, XML documents on mainframes are not plain 
text files according to the local conventions. XML 1.0 documents generated on mainframes must either violate the local line-end 
conventions, or employ otherwise unnecessary translation phases before parsing and after generation. Allowing straightforward 
interoperability is particularly important when data stores are shared between mainframe and non-mainframe systems (as 
opposed to being copied from one to the other). Therefore XML 1.1 adds NEL (#x85) to the list of line-end characters. For 
completeness, the Unicode line separator character, #x2028, is also supported.  

Finally, there is considerable demand to define a standard representation of arbitrary Unicode characters in XML documents. 
Therefore, XML 1.1 allows the use of character references to the control characters #x1 through #x1F, most of which are 
forbidden in XML 1.0. For reasons of robustness, however, these characters still cannot be used directly in documents. In order 
to improve the robustness of character encoding detection, the additional control characters #x7F through #x9F, which were 
freely allowed in XML 1.0 documents, now must also appear only as character references. (Whitespace characters are of course 
exempt.) The minor sacrifice of backward compatibility is considered not significant. Due to potential problems with APIs, #x0 is 
still forbidden both directly and as a character reference.  

Finally, XML 1.1 defines a set of constraints called "full normalization" on XML documents, which document creators SHOULD 
adhere to, and document processors SHOULD verify. Using fully normalized documents ensures that identity comparisons of 
names, attribute values, and character content can be made correctly by simple binary comparison of Unicode strings. 

A new XML version, rather than a set of errata to XML 1.0, is being created because the changes affect the definition of well-
formed documents. XML 1.0 processors must continue to reject documents that contain new characters in XML names, new line-
end conventions, and references to control characters. The distinction between XML 1.0 and XML 1.1 documents is indicated by 
the version number information in the XML declaration at the start of each document.  

2 Documents 

[Definition: A data object is an XML document if it is well-formed, as defined in this specification. In addition, the XML document 
is valid if it meets certain further constraints.]  

Each XML document has both a logical and a physical structure. Physically, the document is composed of units called entities. 
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An entity may refer to other entities to cause their inclusion in the document. A document begins in a "root" or document entity. 
Logically, the document is composed of declarations, elements, comments, character references, and processing instructions, all 
of which are indicated in the document by explicit markup. The logical and physical structures MUST nest properly, as described 
in 4.3.2 Well-Formed Parsed Entities. 

2.1 Well-Formed XML Documents 

[Definition: A textual object is a well-formed XML document if:]  

1. Taken as a whole, it matches the production labeled document. 

2. It meets all the well-formedness constraints given in this specification. 

3. Each of the parsed entities which is referenced directly or indirectly within the document is well-formed. 

Document 

Matching the document production implies that: 

1. It contains one or more elements. 

2. [Definition: There is exactly one element, called the root, or document element, no part of which appears in the content of 
any other element.] For all other elements, if the start-tag is in the content of another element, the end-tag is in the content 
of the same element. More simply stated, the elements, delimited by start- and end-tags, nest properly within each other. 

[Definition: As a consequence of this, for each non-root element C in the document, there is one other element P in the document 
such that C is in the content of P, but is not in the content of any other element that is in the content of P. P is referred to as the 
parent of C, and C as a child of P.]  

2.2 Characters 

[Definition: A parsed entity contains text, a sequence of characters, which may represent markup or character data.] [Definition: 
A character is an atomic unit of text as specified by ISO/IEC 10646 [ISO/IEC 10646]. Legal characters are tab, carriage return, 
line feed, and the legal characters of Unicode and ISO/IEC 10646. The versions of these standards cited in A.1 Normative 
References were current at the time this document was prepared. New characters may be added to these standards by 
amendments or new editions. Consequently, XML processors MUST accept any character in the range specified for Char.]  

Character Range 

The mechanism for encoding character code points into bit patterns may vary from entity to entity. All XML processors MUST 
accept the UTF-8 and UTF-16 encodings of Unicode [Unicode]; the mechanisms for signaling which of the two is in use, or for 
bringing other encodings into play, are discussed later, in 4.3.3 Character Encoding in Entities. 

Note: 

Document authors are encouraged to avoid "compatibility characters", as defined in Unicode [Unicode]. The characters 
defined in the following ranges are also discouraged. They are either control characters or permanently undefined Unicode 
characters: 

[#x1-#x8], [#xB-#xC], [#xE-#x1F], [#x7F-#x84], [#x86-#x9F], [#xFDD0-#xFDDF], 
[#x1FFFE-#x1FFFF], [#x2FFFE-#x2FFFF], [#x3FFFE-#x3FFFF], 
[#x4FFFE-#x4FFFF], [#x5FFFE-#x5FFFF], [#x6FFFE-#x6FFFF], 
[#x7FFFE-#x7FFFF], [#x8FFFE-#x8FFFF], [#x9FFFE-#x9FFFF], 
[#xAFFFE-#xAFFFF], [#xBFFFE-#xBFFFF], [#xCFFFE-#xCFFFF], 
[#xDFFFE-#xDFFFF], [#xEFFFE-#xEFFFF], [#xFFFFE-#xFFFFF], 
[#x10FFFE-#x10FFFF]. 

2.3 Common Syntactic Constructs 

This section defines some symbols used widely in the grammar. 

S (white space) consists of one or more space (#x20) characters, carriage returns, line feeds, or tabs. 

White Space 

Note: 

The presence of #xD in the above production is maintained purely for backward compatibility with the First Edition. As 

[1]   document    ::=   ( prolog element Misc* ) - ( Char* RestrictedChar Char* )

[2]   Char    ::=   [#x1-#xD7FF] | [#xE000-#xFFFD] | 
[#x10000-#x10FFFF]

/* any Unicode character, excluding the surrogate 
blocks, FFFE, and FFFF. */

[2a]   RestrictedChar    ::=   [#x1-#x8] | [#xB-#xC] | [#xE-#x1F] | 
[#x7F-#x84] | [#x86-#x9F]

[3]   S    ::=   (#x20 | #x9 | #xD | #xA)+
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explained in 2.11 End-of-Line Handling, all #xD characters literally present in an XML document are either removed or 
replaced by #xA characters before any other processing is done. The only way to get a #xD character to match this 
production is to use a character reference in an entity value literal. 

[Definition: A Name is a token beginning with a letter or one of a few punctuation characters, and continuing with letters, digits, 
hyphens, underscores, colons, or full stops, together known as name characters.] Names beginning with the string "xml", or with 
any string which would match (('X'|'x') ('M'|'m') ('L'|'l')), are reserved for standardization in this or future versions of 
this specification. 

Note: 

The Namespaces in XML Recommendation [XML Names] assigns a meaning to names containing colon characters. 
Therefore, authors should not use the colon in XML names except for namespace purposes, but XML processors must 
accept the colon as a name character. 

An Nmtoken (name token) is any mixture of name characters. 

The first character of a Name MUST be a NameStartChar, and any other characters MUST be NameChars; this mechanism is 
used to prevent names from beginning with European (ASCII) digits or with basic combining characters. Almost all characters 
are permitted in names, except those which either are or reasonably could be used as delimiters. The intention is to be inclusive 
rather than exclusive, so that writing systems not yet encoded in Unicode can be used in XML names. See I Suggestions for 
XML Names for suggestions on the creation of names. 

Document authors are encouraged to use names which are meaningful words or combinations of words in natural languages, 
and to avoid symbolic or white space characters in names. Note that COLON, HYPHEN-MINUS, FULL STOP (period), LOW 
LINE (underscore), and MIDDLE DOT are explicitly permitted. 

The ASCII symbols and punctuation marks, along with a fairly large group of Unicode symbol characters, are excluded from 
names because they are more useful as delimiters in contexts where XML names are used outside XML documents; providing 
this group gives those contexts hard guarantees about what cannot be part of an XML name. The character #x037E, GREEK 
QUESTION MARK, is excluded because when normalized it becomes a semicolon, which could change the meaning of entity 
references. 

Names and Tokens 

Note: 

The Names and Nmtokens productions are used to define the validity of tokenized attribute values after normalization (see 
3.3.1 Attribute Types). 

Literal data is any quoted string not containing the quotation mark used as a delimiter for that string. Literals are used for 
specifying the content of internal entities (EntityValue), the values of attributes (AttValue), and external identifiers 
(SystemLiteral). Note that a SystemLiteral can be parsed without scanning for markup. 

Literals 

Note: 

Although the EntityValue production allows the definition of a general entity consisting of a single explicit < in the literal (e.g., 
<!ENTITY mylt "<">), it is strongly advised to avoid this practice since any reference to that entity will cause a well-
formedness error. 

2.4 Character Data and Markup 

Text consists of intermingled character data and markup. [Definition: Markup takes the form of start-tags, end-tags, empty-
element tags, entity references, character references, comments, CDATA section delimiters, document type declarations, 
processing instructions, XML declarations, text declarations, and any white space that is at the top level of the document entity 
(that is, outside the document element and not inside any other markup).]  

[4]   NameStartChar    ::=   ":" | [A-Z] | "_" | [a-z] | [#xC0-#xD6] | [#xD8-#xF6] | [#xF8-#x2FF] | [#x370-#x37D] | 
[#x37F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] | 
[#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

[4a]   NameChar    ::=   NameStartChar | "-" | "." | [0-9] | #xB7 | [#x0300-#x036F] | [#x203F-#x2040]
[5]   Name    ::=   NameStartChar (NameChar)*
[6]   Names    ::=   Name (#x20 Name)*
[7]   Nmtoken    ::=   (NameChar)+
[8]   Nmtokens    ::=   Nmtoken (#x20 Nmtoken)*

[9]   EntityValue    ::=   '"' ([^%&"] | PEReference | Reference)* '"' 
|  "'" ([^%&'] | PEReference | Reference)* "'"

[10]   AttValue    ::=   '"' ([^<&"] | Reference)* '"' 
|  "'" ([^<&'] | Reference)* "'"

[11]   SystemLiteral    ::=   ('"' [^"]* '"') | ("'" [^']* "'") 
[12]   PubidLiteral    ::=   '"' PubidChar* '"' | "'" (PubidChar - "'")* "'"
[13]   PubidChar    ::=   #x20 | #xD | #xA | [a-zA-Z0-9] | [-'()+,./:=?;!*#@$_%]
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[Definition: All text that is not markup constitutes the character data of the document.]  

The ampersand character (&) and the left angle bracket (<) MUST NOT appear in their literal form, except when used as markup 
delimiters, or within a comment, a processing instruction, or a CDATA section. If they are needed elsewhere, they MUST be 
escaped using either numeric character references or the strings "&amp;" and "&lt;" respectively. The right angle bracket (>) 
may be represented using the string "&gt;", and MUST, for compatibility, be escaped using either "&gt;" or a character reference 
when it appears in the string "]]>" in content, when that string is not marking the end of a CDATA section. 

In the content of elements, character data is any string of characters which does not contain the start-delimiter of any markup or 
the CDATA-section-close delimiter, "]]>". In a CDATA section, character data is any string of characters not including the 
CDATA-section-close delimiter. 

To allow attribute values to contain both single and double quotes, the apostrophe or single-quote character (') may be 
represented as "&apos;", and the double-quote character (") as "&quot;". 

Character Data 

2.5 Comments 

[Definition: Comments may appear anywhere in a document outside other markup; in addition, they may appear within the 
document type declaration at places allowed by the grammar. They are not part of the document's character data; an XML 
processor MAY, but need not, make it possible for an application to retrieve the text of comments. For compatibility, the string "-
-" (double-hyphen) MUST NOT occur within comments.] Parameter entity references MUST NOT be recognized within 
comments. 

Comments 

An example of a comment: 

<!-- declarations for <head> & <body> --> 

Note that the grammar does not allow a comment ending in --->. The following example is not well-formed. 

<!-- B+, B, or B---> 

2.6 Processing Instructions 

[Definition: Processing instructions (PIs) allow documents to contain instructions for applications.]  

Processing Instructions 

PIs are not part of the document's character data, but MUST be passed through to the application. The PI begins with a target 
(PITarget) used to identify the application to which the instruction is directed. The target names "XML", "xml", and so on are 
reserved for standardization in this or future versions of this specification. The XML Notation mechanism may be used for formal 
declaration of PI targets. Parameter entity references MUST NOT be recognized within processing instructions. 

2.7 CDATA Sections 

[Definition: CDATA sections may occur anywhere character data may occur; they are used to escape blocks of text containing 
characters which would otherwise be recognized as markup. CDATA sections begin with the string "<![CDATA[" and end with the 
string "]]>":]  

CDATA Sections 

Within a CDATA section, only the CDEnd string is recognized as markup, so that left angle brackets and ampersands may occur 
in their literal form; they need not (and cannot) be escaped using "&lt;" and "&amp;". CDATA sections cannot nest. 

An example of a CDATA section, in which "<greeting>" and "</greeting>" are recognized as character data, not markup: 

<![CDATA[<greeting>Hello, world!</greeting>]]>  

[14]   CharData    ::=   [^<&]* - ([^<&]* ']]>' [^<&]*)

[15]   Comment    ::=   '<!--' ((Char - '-') | ('-' (Char - '-')))* '-->'

[16]   PI    ::=   '<?' PITarget (S (Char* - (Char* '?>' Char*)))? '?>'
[17]   PITarget    ::=   Name - (('X' | 'x') ('M' | 'm') ('L' | 'l'))

[18]   CDSect    ::=   CDStart CData CDEnd 
[19]   CDStart    ::=   '<![CDATA['
[20]   CData    ::=   (Char* - (Char* ']]>' Char*)) 
[21]   CDEnd    ::=   ']]>'
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2.8 Prolog and Document Type Declaration 

[Definition: XML 1.1 documents MUST begin with an XML declaration which specifies the version of XML being used.] For 
example, the following is a complete XML 1.1 document, well-formed but not valid: 

<?xml version="1.1"?> 
<greeting>Hello, world!</greeting>  

but the following is an XML 1.0 document because it does not have an XML declaration: 

<greeting>Hello, world!</greeting> 

The function of the markup in an XML document is to describe its storage and logical structure and to associate attribute name-
value pairs with its logical structures. XML provides a mechanism, the document type declaration, to define constraints on the 
logical structure and to support the use of predefined storage units. [Definition: An XML document is valid if it has an associated 
document type declaration and if the document complies with the constraints expressed in it.]  

The document type declaration MUST appear before the first element in the document. 

Prolog 

[Definition: The XML document type declaration contains or points to markup declarations that provide a grammar for a class 
of documents. This grammar is known as a document type definition, or DTD. The document type declaration can point to an 
external subset (a special kind of external entity) containing markup declarations, or can contain the markup declarations directly 
in an internal subset, or can do both. The DTD for a document consists of both subsets taken together.]  

[Definition: A markup declaration is an element type declaration, an attribute-list declaration, an entity declaration, or a notation 
declaration.] These declarations may be contained in whole or in part within parameter entities, as described in the well-
formedness and validity constraints below. For further information, see 4 Physical Structures. 

Document Type Definition 

Note that it is possible to construct a well-formed document containing a doctypedecl that neither points to an external subset nor 
contains an internal subset. 

The markup declarations may be made up in whole or in part of the replacement text of parameter entities. The productions later 
in this specification for individual nonterminals (elementdecl, AttlistDecl, and so on) describe the declarations after all the 
parameter entities have been included. 

Parameter entity references are recognized anywhere in the DTD (internal and external subsets and external parameter entities), 
except in literals, processing instructions, comments, and the contents of ignored conditional sections (see 3.4 Conditional 
Sections). They are also recognized in entity value literals. The use of parameter entities in the internal subset is restricted as 
described below. 

Validity constraint: Root Element Type 

The Name in the document type declaration MUST match the element type of the root element. 

Validity constraint: Proper Declaration/PE Nesting 

Parameter-entity replacement text MUST be properly nested with markup declarations. That is to say, if either the first 
character or the last character of a markup declaration (markupdecl above) is contained in the replacement text for a 
parameter-entity reference, both MUST be contained in the same replacement text. 

Well-formedness constraint: PEs in Internal Subset 

In the internal DTD subset, parameter-entity references MUST NOT occur within markup declarations; they may occur 
where markup declarations can occur. (This does not apply to references that occur in external parameter entities or to the 

[22]   prolog    ::=   XMLDecl Misc* (doctypedecl Misc*)?
[23]   XMLDecl    ::=   '<?xml' VersionInfo EncodingDecl? SDDecl? S? '?>'
[24]   VersionInfo    ::=   S 'version' Eq ("'" VersionNum "'" | '"' VersionNum '"')
[25]   Eq    ::=   S? '=' S?
[26]   VersionNum    ::=   '1.1'
[27]   Misc    ::=   Comment | PI | S 

[28]   doctypedecl    ::=   '<!DOCTYPE' S Name (S ExternalID)? S? ('[' intSubset ']' 
S?)? '>'

[VC: Root Element Type]

[WFC: External Subset]
[28a]   DeclSep    ::=   PEReference | S [WFC: PE Between 

Declarations]
[28b]   intSubset    ::=   (markupdecl | DeclSep)*
[29]   markupdecl    ::=   elementdecl | AttlistDecl | EntityDecl | NotationDecl | PI 

| Comment 
[VC: Proper Declaration/PE 
Nesting]
[WFC: PEs in Internal Subset]
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external subset.) 

Well-formedness constraint: External Subset 

The external subset, if any, MUST match the production for extSubset. 

Well-formedness constraint: PE Between Declarations 

The replacement text of a parameter entity reference in a DeclSep MUST match the production extSubsetDecl. 

Like the internal subset, the external subset and any external parameter entities referenced in a DeclSep MUST consist of a 
series of complete markup declarations of the types allowed by the non-terminal symbol markupdecl, interspersed with white 
space or parameter-entity references. However, portions of the contents of the external subset or of these external parameter 
entities may conditionally be ignored by using the conditional section construct; this is not allowed in the internal subset but is 
allowed in external parameter entities referenced in the internal subset. 

External Subset 

The external subset and external parameter entities also differ from the internal subset in that in them, parameter-entity 
references are permitted within markup declarations, not only between markup declarations. 

An example of an XML document with a document type declaration: 

<?xml version="1.1"?> 
<!DOCTYPE greeting SYSTEM "hello.dtd"> 
<greeting>Hello, world!</greeting>  

The system identifier "hello.dtd" gives the address (a URI reference) of a DTD for the document. 

The declarations can also be given locally, as in this example: 

<?xml version="1.1" encoding="UTF-8" ?> 
<!DOCTYPE greeting [ 
<!ELEMENT greeting (#PCDATA)> 
]> 
<greeting>Hello, world!</greeting> 

If both the external and internal subsets are used, the internal subset MUST be considered to occur before the external subset. 
This has the effect that entity and attribute-list declarations in the internal subset take precedence over those in the external 
subset. 

If a document is well-formed or valid XML 1.0, and provided it does not contain any control characters in the range [#x7F-#x9F] 
other than as character escapes, it may be made well-formed or valid XML 1.1 respectively simply by changing the version 
number. 

2.9 Standalone Document Declaration 

Markup declarations can affect the content of the document, as passed from an XML processor to an application; examples are 
attribute defaults and entity declarations. The standalone document declaration, which may appear as a component of the XML 
declaration, signals whether or not there are such declarations which appear external to the document entity or in parameter 
entities. [Definition: An external markup declaration is defined as a markup declaration occurring in the external subset or in a 
parameter entity (external or internal, the latter being included because non-validating processors are not required to read 
them).]  

Standalone Document Declaration 

In a standalone document declaration, the value "yes" indicates that there are no external markup declarations which affect the 
information passed from the XML processor to the application. The value "no" indicates that there are or may be such external 
markup declarations. Note that the standalone document declaration only denotes the presence of external declarations; the 
presence, in a document, of references to external entities, when those entities are internally declared, does not change its 
standalone status. 

If there are no external markup declarations, the standalone document declaration has no meaning. If there are external markup 
declarations but there is no standalone document declaration, the value "no" is assumed. 

Any XML document for which standalone="no" holds can be converted algorithmically to a standalone document, which may be 
desirable for some network delivery applications. 

Validity constraint: Standalone Document Declaration 

The standalone document declaration MUST have the value "no" if any external markup declarations contain declarations 

[30]   extSubset    ::=   TextDecl? extSubsetDecl 
[31]   extSubsetDecl    ::=   ( markupdecl | conditionalSect | DeclSep)*

[32]   SDDecl    ::=   S 'standalone' Eq (("'" ('yes' | 'no') "'") | ('"' ('yes' | 
'no') '"')) 

[VC: Standalone Document 
Declaration]
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of: 

attributes with default values, if elements to which these attributes apply appear in the document without specifications 
of values for these attributes, or 

entities (other than amp, lt, gt, apos, quot), if references to those entities appear in the document, or 

attributes with tokenized types, where the attribute appears in the document with a value such that normalization will 
produce a different value from that which would be produced in the absence of the declaration, or 

element types with element content, if white space occurs directly within any instance of those types. 

An example XML declaration with a standalone document declaration: 

<?xml version="1.1" standalone='yes'?> 

2.10 White Space Handling 

In editing XML documents, it is often convenient to use "white space" (spaces, tabs, and blank lines) to set apart the markup for 
greater readability. Such white space is typically not intended for inclusion in the delivered version of the document. On the other 
hand, "significant" white space that should be preserved in the delivered version is common, for example in poetry and source 
code. 

An XML processor MUST always pass all characters in a document that are not markup through to the application. A validating 
XML processor MUST also inform the application which of these characters constitute white space appearing in element content. 

A special attribute named xml:space may be attached to an element to signal an intention that in that element, white space 
should be preserved by applications. In valid documents, this attribute, like any other, MUST be declared if it is used. When 
declared, it MUST be given as an enumerated type whose values are one or both of "default" and "preserve". For example: 

<!ATTLIST poem  xml:space (default|preserve) 'preserve'> 
<!ATTLIST pre xml:space (preserve) #FIXED 'preserve'> 

The value "default" signals that applications' default white-space processing modes are acceptable for this element; the value 
"preserve" indicates the intent that applications preserve all the white space. This declared intent is considered to apply to all 
elements within the content of the element where it is specified, unless overridden with another instance of the xml:space 
attribute. This specification does not give meaning to any value of xml:space other than "default" and "preserve". It is an error for 
other values to be specified; the XML processor MAY report the error or MAY recover by ignoring the attribute specification or by 
reporting the (erroneous) value to the application. Applications may ignore or reject erroneous values. 

The root element of any document is considered to have signaled no intentions as regards application space handling, unless it 
provides a value for this attribute or the attribute is declared with a default value. 

2.11 End-of-Line Handling 

XML parsed entities are often stored in computer files which, for editing convenience, are organized into lines. These lines are 
typically separated by some combination of the characters CARRIAGE RETURN (#xD) and LINE FEED (#xA). 

To simplify the tasks of applications, the XML processor MUST behave as if it normalized all line breaks in external parsed 
entities (including the document entity) on input, before parsing, by translating all of the following to a single #xA character: 

1. the two-character sequence #xD #xA 

2. the two-character sequence #xD #x85 

3. the single character #x85 

4. the single character #x2028 

5. any #xD character that is not immediately followed by #xA or #x85. 

The characters #x85 and #x2028 cannot be reliably recognized and translated until an entity's encoding declaration (if present) 
has been read. Therefore, it is a fatal error to use them within the XML declaration or text declaration.  

2.12 Language Identification 

In document processing, it is often useful to identify the natural or formal language in which the content is written. A special 
attribute named xml:lang may be inserted in documents to specify the language used in the contents and attribute values of any 
element in an XML document. In valid documents, this attribute, like any other, MUST be declared if it is used. The values of the 
attribute are language identifiers as defined by [IETF RFC 3066], Tags for the Identification of Languages, or its successor; in 
addition, the empty string may be specified. 

(Productions 33 through 38 have been removed.) 

For example: 
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<p xml:lang="en">The quick brown fox jumps over the lazy dog.</p> 
<p xml:lang="en-GB">What colour is it?</p> 
<p xml:lang="en-US">What color is it?</p> 
<sp who="Faust" desc='leise' xml:lang="de"> 
<l>Habe nun, ach! Philosophie,</l> 
<l>Juristerei, und Medizin</l> 
<l>und leider auch Theologie</l> 
<l>durchaus studiert mit hei&#xDF;em Bem&#xFC;h'n.</l> 
</sp> 

The language specified by xml:lang applies to the element where it is specified (including the values of its attributes), and to all 
elements in its content unless overridden with another instance of xml:lang. In particular, the empty value of xml:lang is used on 
an element B to override a specification of xml:lang on an enclosing element A, without specifying another language. Within B, it 
is considered that there is no language information available, just as if xml:lang had not been specified on B or any of its 
ancestors. Applications determine which of an element's attribute values and which parts of its character content, if any, are 
treated as language-dependent values described by xml:lang.  

Note: 

Language information may also be provided by external transport protocols (e.g. HTTP or MIME). When available, this 
information may be used by XML applications, but the more local information provided by xml:lang should be considered to 
override it.  

A simple declaration for xml:lang might take the form 

xml:lang CDATA #IMPLIED 

but specific default values may also be given, if appropriate. In a collection of French poems for English students, with glosses 
and notes in English, the xml:lang attribute might be declared this way: 

<!ATTLIST poem   xml:lang CDATA 'fr'> 
<!ATTLIST gloss  xml:lang CDATA 'en'> 
<!ATTLIST note   xml:lang CDATA 'en'> 

2.13 Normalization Checking 

All XML parsed entities (including document entities) SHOULD be fully normalized as per the definition of B Definitions for 
Character Normalization supplemented by the following definitions of relevant constructs for XML: 

1. The replacement text of all parsed entities  

2. All text matching, in context, one of the following productions: 

a. CData  

b. CharData  

c. content  

d. Name  

e. Nmtoken  

However, a document is still well-formed even if it is not fully normalized. XML processors SHOULD provide a user option to 
verify that the document being processed is in fully normalized form, and report to the application whether it is or not. The option 
to not verify SHOULD be chosen only when the input text is certified, as defined by B Definitions for Character Normalization. 

The verification of full normalization MUST be carried out as if by first verifying that the entity is in include-normalized form as 
defined by B Definitions for Character Normalization and by then verifying that none of the relevant constructs listed above 
begins (after character references are expanded) with a composing character as defined by B Definitions for Character 
Normalization. Non-validating processors MUST ignore possible denormalizations that would be caused by inclusion of external 
entities that they do not read. 

Note: 

The composing character are all Unicode characters of non-zero combining class, plus a small number of class-zero 
characters that nevertheless take part as a non-initial character in certain Unicode canonical decompositions. Since these 
characters are meant to follow base characters, restricting relevant constructs (including content) from beginning with a 
composing character does not meaningfully diminish the expressiveness of XML. 

If, while verifying full normalization, a processor encounters characters for which it cannot determine the normalization properties 
(i.e., characters introduced in a version of Unicode [Unicode] later than the one used in the implementation of the processor), 
then the processor MAY, at user option, ignore any possible denormalizations caused by these characters. The option to ignore 
those denormalizations SHOULD NOT be chosen by applications when reliability or security are critical. 

XML processors MUST NOT transform the input to be in fully normalized form. XML applications that create XML 1.1 output from 
either XML 1.1 or XML 1.0 input SHOULD ensure that the output is fully normalized; it is not necessary for internal processing 
forms to be fully normalized. 
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The purpose of this section is to strongly encourage XML processors to ensure that the creators of XML documents have 
properly normalized them, so that XML applications can make tests such as identity comparisons of strings without having to 
worry about the different possible "spellings" of strings which Unicode allows.  

When entities are in a non-Unicode encoding, if the processor transcodes them to Unicode, it SHOULD use a normalizing 
transcoder.  

3 Logical Structures 

[Definition: Each XML document contains one or more elements, the boundaries of which are either delimited by start-tags and 
end-tags, or, for empty elements, by an empty-element tag. Each element has a type, identified by name, sometimes called its 
"generic identifier" (GI), and may have a set of attribute specifications.] Each attribute specification has a name and a value. 

Element 

This specification does not constrain the application semantics, use, or (beyond syntax) names of the element types and 
attributes, except that names beginning with a match to (('X'|'x')('M'|'m')('L'|'l')) are reserved for standardization in this 
or future versions of this specification. 

Well-formedness constraint: Element Type Match 

The Name in an element's end-tag MUST match the element type in the start-tag. 

Validity constraint: Element Valid 

An element is valid if there is a declaration matching elementdecl where the Name matches the element type, and one of 
the following holds: 

1. The declaration matches EMPTY and the element has no content (not even entity references, comments, PIs or white 
space). 

2. The declaration matches children and the sequence of child elements belongs to the language generated by the 
regular expression in the content model, with optional white space, comments and PIs (i.e. markup matching 
production [27] Misc) between the start-tag and the first child element, between child elements, or between the last 
child element and the end-tag. Note that a CDATA section containing only white space or a reference to an entity 
whose replacement text is character references expanding to white space do not match the nonterminal S, and hence 
cannot appear in these positions; however, a reference to an internal entity with a literal value consisting of character 
references expanding to white space does match S, since its replacement text is the white space resulting from 
expansion of the character references. 

3. The declaration matches Mixed , and the content (after replacing any entity references with their replacement text) 
consists of character data (including CDATA sections), comments, PIs and child elements whose types match names 
in the content model. 

4. The declaration matches ANY, and the content (after replacing any entity references with their replacement text) 
consists of character data , CDATA sections, comments, PIs and child elements whose types have been declared. 

3.1 Start-Tags, End-Tags, and Empty-Element Tags 

[Definition: The beginning of every non-empty XML element is marked by a start-tag.]  

Start-tag 

The Name in the start- and end-tags gives the element's type. [Definition: The Name-AttValue pairs are referred to as the 
attribute specifications of the element], [Definition: with the Name in each pair referred to as the attribute name ] and 
[Definition: the content of the AttValue (the text between the ' or " delimiters) as the attribute value.] Note that the order of 
attribute specifications in a start-tag or empty-element tag is not significant. 

Well-formedness constraint: Unique Att Spec 

An attribute name MUST NOT appear more than once in the same start-tag or empty-element tag. 

Validity constraint: Attribute Value Type 

The attribute MUST have been declared; the value MUST be of the type declared for it. (For attribute types, see 3.3 
Attribute-List Declarations.) 

[39]   element    ::=   EmptyElemTag 
| STag content ETag [WFC: Element Type Match]

[VC: Element Valid]

[40]   STag    ::=   '<' Name (S Attribute)* S? '>' [WFC: Unique Att Spec]
[41]   Attribute    ::=   Name Eq AttValue [VC: Attribute Value Type]

[WFC: No External Entity References]
[WFC: No < in Attribute Values]
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Well-formedness constraint: No External Entity References 

Attribute values MUST NOT contain direct or indirect entity references to external entities. 

Well-formedness constraint: No < in Attribute Values 

The replacement text of any entity referred to directly or indirectly in an attribute value MUST NOT contain a <. 

An example of a start-tag: 

<termdef id="dt-dog" term="dog"> 

[Definition: The end of every element that begins with a start-tag MUST be marked by an end-tag containing a name that echoes 
the element's type as given in the start-tag:]  

End-tag 

An example of an end-tag: 

</termdef> 

[Definition: The text between the start-tag and end-tag is called the element's content:]  

Content of Elements 

[Definition: An element with no content is said to be empty.] The representation of an empty element is either a start-tag 
immediately followed by an end-tag, or an empty-element tag. [Definition: An empty-element tag takes a special form:]  

Tags for Empty Elements 

Empty-element tags may be used for any element which has no content, whether or not it is declared using the keyword EMPTY. 
For interoperability, the empty-element tag SHOULD be used, and SHOULD only be used, for elements which are declared 
EMPTY. 

Examples of empty elements: 

<IMG align="left" 
src="http://www.w3.org/Icons/WWW/w3c_home" /> 
<br></br> 
<br/> 

3.2 Element Type Declarations 

The element structure of an XML document may, for validation purposes, be constrained using element type and attribute-list 
declarations. An element type declaration constrains the element's content. 

Element type declarations often constrain which element types can appear as children of the element. At user option, an XML 
processor MAY issue a warning when a declaration mentions an element type for which no declaration is provided, but this is not 
an error. 

[Definition: An element type declaration takes the form:]  

Element Type Declaration 

where the Name gives the element type being declared. 

Validity constraint: Unique Element Type Declaration 

An element type MUST NOT be declared more than once. 

Examples of element type declarations: 

<!ELEMENT br EMPTY> 
<!ELEMENT p (#PCDATA|emph)* > 
<!ELEMENT %name.para; %content.para; > 
<!ELEMENT container ANY> 

[42]   ETag    ::=   '</' Name S? '>'

[43]   content    ::=   CharData? ((element | Reference | CDSect | PI | Comment) CharData?)*

[44]   EmptyElemTag    ::=   '<' Name (S Attribute)* S? '/>' [WFC: Unique Att Spec]

[45]   elementdecl    ::=   '<!ELEMENT' S Name S contentspec S? '>' [VC: Unique Element Type Declaration]
[46]   contentspec    ::=   'EMPTY' | 'ANY' | Mixed | children 
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3.2.1 Element Content 

[Definition: An element type has element content when elements of that type MUST contain only child elements (no character 
data), optionally separated by white space (characters matching the nonterminal S).] [Definition: In this case, the constraint 
includes a content model, a simple grammar governing the allowed types of the child elements and the order in which they are 
allowed to appear.] The grammar is built on content particles (cps), which consist of names, choice lists of content particles, or 
sequence lists of content particles: 

Element-content Models 

where each Name is the type of an element which may appear as a child. Any content particle in a choice list may appear in the 
element content at the location where the choice list appears in the grammar; content particles occurring in a sequence list 
MUST each appear in the element content in the order given in the list. The optional character following a name or list governs 
whether the element or the content particles in the list may occur one or more (+), zero or more (*), or zero or one times (?). The 
absence of such an operator means that the element or content particle MUST appear exactly once. This syntax and meaning 
are identical to those used in the productions in this specification. 

The content of an element matches a content model if and only if it is possible to trace out a path through the content model, 
obeying the sequence, choice, and repetition operators and matching each element in the content against an element type in the 
content model. For compatibility, it is an error if the content model allows an element to match more than one occurrence of an 
element type in the content model. For more information, see D Deterministic Content Models. 

Validity constraint: Proper Group/PE Nesting 

Parameter-entity replacement text MUST be properly nested with parenthesized groups. That is to say, if either of the 
opening or closing parentheses in a choice, seq, or Mixed construct is contained in the replacement text for a parameter 
entity, both MUST be contained in the same replacement text. 

For interoperability, if a parameter-entity reference appears in a choice, seq, or Mixed construct, its replacement text 
SHOULD contain at least one non-blank character, and neither the first nor last non-blank character of the replacement text 
SHOULD be a connector (| or ,). 

Examples of element-content models: 

<!ELEMENT spec (front, body, back?)> 
<!ELEMENT div1 (head, (p | list | note)*, div2*)> 
<!ELEMENT dictionary-body (%div.mix; | %dict.mix;)*> 

3.2.2 Mixed Content 

[Definition: An element type has mixed content when elements of that type may contain character data, optionally interspersed 
with child elements.] In this case, the types of the child elements may be constrained, but not their order or their number of 
occurrences: 

Mixed-content Declaration 

where the Names give the types of elements that may appear as children. The keyword #PCDATA derives historically from the 
term "parsed character data."  

Validity constraint: No Duplicate Types 

The same name MUST NOT appear more than once in a single mixed-content declaration. 

Examples of mixed content declarations: 

<!ELEMENT p (#PCDATA|a|ul|b|i|em)*> 
<!ELEMENT p (#PCDATA | %font; | %phrase; | %special; | %form;)* > 
<!ELEMENT b (#PCDATA)> 

3.3 Attribute-List Declarations 

Attributes are used to associate name-value pairs with elements. Attribute specifications MUST NOT appear outside of start-tags 
and empty-element tags; thus, the productions used to recognize them appear in 3.1 Start-Tags, End-Tags, and Empty-
Element Tags. Attribute-list declarations may be used: 

[47]   children    ::=   (choice | seq) ('?' | '*' | '+')?
[48]   cp    ::=   (Name | choice | seq) ('?' | '*' | '+')?
[49]   choice    ::=   '(' S? cp ( S? '|' S? cp )+ S? ')' [VC: Proper Group/PE Nesting]
[50]   seq    ::=   '(' S? cp ( S? ',' S? cp )* S? ')' [VC: Proper Group/PE Nesting]

[51]   Mixed    ::=   '(' S? '#PCDATA' (S? '|' S? Name)* S? ')*' 

| '(' S? '#PCDATA' S? ')' [VC: Proper Group/PE Nesting]
[VC: No Duplicate Types]
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To define the set of attributes pertaining to a given element type. 

To establish type constraints for these attributes. 

To provide default values for attributes. 

[Definition: Attribute-list declarations specify the name, data type, and default value (if any) of each attribute associated with a 
given element type:]  

Attribute-list Declaration 

The Name in the AttlistDecl rule is the type of an element. At user option, an XML processor MAY issue a warning if attributes 
are declared for an element type not itself declared, but this is not an error. The Name in the AttDef rule is the name of the 
attribute. 

When more than one AttlistDecl is provided for a given element type, the contents of all those provided are merged. When more 
than one definition is provided for the same attribute of a given element type, the first declaration is binding and later declarations 
are ignored. For interoperability, writers of DTDs may choose to provide at most one attribute-list declaration for a given element 
type, at most one attribute definition for a given attribute name in an attribute-list declaration, and at least one attribute definition 
in each attribute-list declaration. For interoperability, an XML processor MAY at user option issue a warning when more than one 
attribute-list declaration is provided for a given element type, or more than one attribute definition is provided for a given attribute, 
but this is not an error. 

3.3.1 Attribute Types 

XML attribute types are of three kinds: a string type, a set of tokenized types, and enumerated types. The string type may take 
any literal string as a value; the tokenized types are more constrained. The validity constraints noted in the grammar are applied 
after the attribute value has been normalized as described in 3.3.3 Attribute-Value Normalization. 

Attribute Types 

Validity constraint: ID 

Values of type ID MUST match the Name production. A name MUST NOT appear more than once in an XML document as 
a value of this type; i.e., ID values MUST uniquely identify the elements which bear them. 

Validity constraint: One ID per Element Type 

An element type MUST NOT have more than one ID attribute specified. 

Validity constraint: ID Attribute Default 

An ID attribute MUST have a declared default of #IMPLIED or #REQUIRED. 

Validity constraint: IDREF 

Values of type IDREF MUST match the Name production, and values of type IDREFS MUST match Names; each Name 
MUST match the value of an ID attribute on some element in the XML document; i.e. IDREF values MUST match the value 
of some ID attribute. 

Validity constraint: Entity Name 

Values of type ENTITY MUST match the Name production, values of type ENTITIES MUST match Names; each Name 
MUST match the name of an unparsed entity declared in the DTD. 

Validity constraint: Name Token 

Values of type NMTOKEN MUST match the Nmtoken production; values of type NMTOKENS MUST match Nmtokens. 

[Definition: Enumerated attributes have a list of allowed values in their declaration ]. They MUST take one of those values. 

[52]   AttlistDecl    ::=   '<!ATTLIST' S Name AttDef* S? '>'
[53]   AttDef    ::=   S Name S AttType S DefaultDecl 

[54]   AttType    ::=   StringType | TokenizedType | EnumeratedType
[55]   StringType    ::=   'CDATA'
[56]   TokenizedType    ::=   'ID' [VC: ID]

[VC: One ID per Element Type]
[VC: ID Attribute Default]

| 'IDREF' [VC: IDREF]
| 'IDREFS' [VC: IDREF]
| 'ENTITY' [VC: Entity Name]
| 'ENTITIES' [VC: Entity Name]
| 'NMTOKEN' [VC: Name Token]
| 'NMTOKENS' [VC: Name Token]
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There are two kinds of enumerated attribute types: 

Enumerated Attribute Types 

A NOTATION attribute identifies a notation, declared in the DTD with associated system and/or public identifiers, to be used in 
interpreting the element to which the attribute is attached. 

Validity constraint: Notation Attributes 

Values of this type MUST match one of the notation names included in the declaration; all notation names in the declaration 
MUST be declared. 

Validity constraint: One Notation Per Element Type 

An element type MUST NOT have more than one NOTATION attribute specified. 

Validity constraint: No Notation on Empty Element 

For compatibility, an attribute of type NOTATION MUST NOT be declared on an element declared EMPTY. 

Validity constraint: No Duplicate Tokens 

The notation names in a single NotationType attribute declaration, as well as the NmTokens in a single Enumeration 
attribute declaration, MUST all be distinct. 

Validity constraint: Enumeration 

Values of this type MUST match one of the Nmtoken tokens in the declaration. 

For interoperability, the same Nmtoken SHOULD NOT occur more than once in the enumerated attribute types of a single 
element type. 

3.3.2 Attribute Defaults 

An attribute declaration provides information on whether the attribute's presence is REQUIRED, and if not, how an XML 
processor is to react if a declared attribute is absent in a document. 

Attribute Defaults 

In an attribute declaration, #REQUIRED means that the attribute MUST always be provided, #IMPLIED that no default value is 
provided. [Definition: If the declaration is neither #REQUIRED nor #IMPLIED, then the AttValue value contains the declared 
default value; the #FIXED keyword states that the attribute MUST always have the default value. When an XML processor 
encounters an element without a specification for an attribute for which it has read a default value declaration, it MUST report the 
attribute with the declared default value to the application.]  

Validity constraint: Required Attribute 

If the default declaration is the keyword #REQUIRED, then the attribute MUST be specified for all elements of the type in the 
attribute-list declaration. 

Validity constraint: Attribute Default Value Syntactically Correct 

The declared default value MUST meet the syntactic constraints of the declared attribute type. That is, the default value of 
an attribute:  

of type IDREF or ENTITY must match the Name production; 

of type IDREFS or ENTITIES must match the Names production; 

of type NMTOKEN must match the Nmtoken production; 

[57]   EnumeratedType    ::=   NotationType | Enumeration 
[58]   NotationType    ::=   'NOTATION' S '(' S? Name (S? '|' S? Name)* S? ')' [VC: Notation Attributes]

[VC: One Notation Per Element Type]
[VC: No Notation on Empty Element]
[VC: No Duplicate Tokens]

[59]   Enumeration    ::=   '(' S? Nmtoken (S? '|' S? Nmtoken)* S? ')' [VC: Enumeration]
[VC: No Duplicate Tokens]

[60]   DefaultDecl    ::=   '#REQUIRED' | '#IMPLIED' 
| (('#FIXED' S)? AttValue) [VC: Required Attribute]

[VC: Attribute Default Value Syntactically Correct]
[WFC: No < in Attribute Values]
[VC: Fixed Attribute Default]
[WFC: No External Entity References]
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of type NMTOKENS must match the Nmtokens production; 

of an enumerated type (either a NOTATION type or an enumeration) must match one of the enumerated values. 

Note that only the syntactic constraints of the type are required here; other constraints (e.g. that the value be the name of a 
declared unparsed entity, for an attribute of type ENTITY) will be reported by a validating parser only if an element without a 
specification for this attribute actually occurs. 

Validity constraint: Fixed Attribute Default 

If an attribute has a default value declared with the #FIXED keyword, instances of that attribute MUST match the default 
value. 

Examples of attribute-list declarations: 

<!ATTLIST termdef 
id      ID      #REQUIRED 
name    CDATA   #IMPLIED> 
<!ATTLIST list 
type    (bullets|ordered|glossary)  "ordered"> 
<!ATTLIST form 
method  CDATA   #FIXED "POST"> 

3.3.3 Attribute-Value Normalization 

Before the value of an attribute is passed to the application or checked for validity, the XML processor MUST normalize the 
attribute value by applying the algorithm below, or by using some other method such that the value passed to the application is 
the same as that produced by the algorithm. 

1. All line breaks MUST have been normalized on input to #xA as described in 2.11 End-of-Line Handling, so the rest of this 
algorithm operates on text normalized in this way. 

2. Begin with a normalized value consisting of the empty string. 

3. For each character, entity reference, or character reference in the unnormalized attribute value, beginning with the first and 
continuing to the last, do the following: 

For a character reference, append the referenced character to the normalized value. 

For an entity reference, recursively apply step 3 of this algorithm to the replacement text of the entity. 

For a white space character (#x20, #xD, #xA, #x9), append a space character (#x20) to the normalized value. 

For another character, append the character to the normalized value. 

If the attribute type is not CDATA, then the XML processor MUST further process the normalized attribute value by discarding 
any leading and trailing space (#x20) characters, and by replacing sequences of space (#x20) characters by a single space 
(#x20) character. 

Note that if the unnormalized attribute value contains a character reference to a white space character other than space (#x20), 
the normalized value contains the referenced character itself (#xD, #xA or #x9). This contrasts with the case where the 
unnormalized value contains a white space character (not a reference), which is replaced with a space character (#x20) in the 
normalized value and also contrasts with the case where the unnormalized value contains an entity reference whose 
replacement text contains a white space character; being recursively processed, the white space character is replaced with a 
space character (#x20) in the normalized value. 

All attributes for which no declaration has been read SHOULD be treated by a non-validating processor as if declared CDATA. 

It is an error if an attribute value contains a reference to an entity for which no declaration has been read. 

Following are examples of attribute normalization. Given the following declarations: 

<!ENTITY d "&#xD;"> 
<!ENTITY a "&#xA;"> 
<!ENTITY da "&#xD;&#xA;"> 

the attribute specifications in the left column below would be normalized to the character sequences of the middle column if the 
attribute a is declared NMTOKENS and to those of the right columns if a is declared CDATA. 

Attribute specification a is NMTOKENS a is CDATA

a=" 
xyz" x y z #x20 #x20 x y z 

a="&d;&d;A&a;&#x20;&a;B&da;" A #x20 B #x20 #x20 A #x20 #x20 #x20 B #x20 #x20 

a= 
"&#xd;&#xd;A&#xa;&#xa;B&#xd;&#xa;" #xD #xD A #xA #xA B #xD #xA #xD #xD A #xA #xA B #xD #xA 
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Note that the last example is invalid (but well-formed) if a is declared to be of type NMTOKENS. 

3.4 Conditional Sections 

[Definition: Conditional sections are portions of the document type declaration external subset or of external parameter entities 
which are included in, or excluded from, the logical structure of the DTD based on the keyword which governs them.]  

Conditional Section 

Validity constraint: Proper Conditional Section/PE Nesting 

If any of the "<![", "[", or "]]>" of a conditional section is contained in the replacement text for a parameter-entity reference, 
all of them MUST be contained in the same replacement text. 

Like the internal and external DTD subsets, a conditional section may contain one or more complete declarations, comments, 
processing instructions, or nested conditional sections, intermingled with white space. 

If the keyword of the conditional section is INCLUDE, then the contents of the conditional section MUST be processed as part of 
the DTD. If the keyword of the conditional section is IGNORE, then the contents of the conditional section MUST NOT be 
processed as part of the DTD. If a conditional section with a keyword of INCLUDE occurs within a larger conditional section with 
a keyword of IGNORE, both the outer and the inner conditional sections MUST be ignored. The contents of an ignored 
conditional section MUST be parsed by ignoring all characters after the "[" following the keyword, except conditional section 
starts "<![" and ends "]]>", until the matching conditional section end is found. Parameter entity references MUST NOT be 
recognized in this process. 

If the keyword of the conditional section is a parameter-entity reference, the parameter entity MUST be replaced by its content 
before the processor decides whether to include or ignore the conditional section. 

An example: 

<!ENTITY % draft 'INCLUDE' > 
<!ENTITY % final 'IGNORE' > 
<![%draft;[ 
<!ELEMENT book (comments*, title, body, supplements?)> 
]]> 
<![%final;[ 
<!ELEMENT book (title, body, supplements?)> 
]]> 

4 Physical Structures 

[Definition: An XML document may consist of one or many storage units. These are called entities; they all have content and 
are all (except for the document entity and the external DTD subset) identified by entity name.] Each XML document has one 
entity called the document entity, which serves as the starting point for the XML processor and may contain the whole document. 

Entities may be either parsed or unparsed. [Definition: The contents of a parsed entity are referred to as its replacement text; 
this text is considered an integral part of the document.]  

[Definition: An unparsed entity is a resource whose contents may or may not be text, and if text, may be other than XML. Each 
unparsed entity has an associated notation, identified by name. Beyond a requirement that an XML processor make the 
identifiers for the entity and notation available to the application, XML places no constraints on the contents of unparsed entities.]  

Parsed entities are invoked by name using entity references; unparsed entities by name, given in the value of ENTITY or 
ENTITIES attributes. 

[Definition: General entities are entities for use within the document content. In this specification, general entities are sometimes 
referred to with the unqualified term entity when this leads to no ambiguity.] [Definition: Parameter entities are parsed entities 
for use within the DTD.] These two types of entities use different forms of reference and are recognized in different contexts. 
Furthermore, they occupy different namespaces; a parameter entity and a general entity with the same name are two distinct 
entities. 

4.1 Character and Entity References 

[Definition: A character reference refers to a specific character in the ISO/IEC 10646 character set, for example one not directly 
accessible from available input devices.]  

Character Reference 

[61]   conditionalSect    ::=   includeSect | ignoreSect 
[62]   includeSect    ::=   '<![' S? 'INCLUDE' S? '[' extSubsetDecl ']]>' [VC: Proper Conditional Section/PE 

Nesting]
[63]   ignoreSect    ::=   '<![' S? 'IGNORE' S? '[' ignoreSectContents* 

']]>'
[VC: Proper Conditional Section/PE 
Nesting]

[64]   ignoreSectContents    ::=   Ignore ('<![' ignoreSectContents ']]>' Ignore)
*

[65]   Ignore    ::=   Char* - (Char* ('<![' | ']]>') Char*) 
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Well-formedness constraint: Legal Character 

Characters referred to using character references MUST match the production for Char. 

If the character reference begins with "&#x", the digits and letters up to the terminating ; provide a hexadecimal representation of 
the character's code point in ISO/IEC 10646. If it begins just with "&#", the digits up to the terminating ; provide a decimal 
representation of the character's code point. 

[Definition: An entity reference refers to the content of a named entity.] [Definition: References to parsed general entities use 
ampersand (&) and semicolon (;) as delimiters.] [Definition: Parameter-entity references use percent-sign (%) and semicolon (;) 
as delimiters.]  

Entity Reference 

Well-formedness constraint: Entity Declared 

In a document without any DTD, a document with only an internal DTD subset which contains no parameter entity 
references, or a document with "standalone='yes'", for an entity reference that does not occur within the external subset or 
a parameter entity, the Name given in the entity reference MUST match that in an entity declaration that does not occur 
within the external subset or a parameter entity, except that well-formed documents need not declare any of the following 
entities: amp, lt, gt, apos, quot. The declaration of a general entity MUST precede any reference to it which appears in a 
default value in an attribute-list declaration. 

Note that non-validating processors are not obligated to to read and process entity declarations occurring in parameter 
entities or in the external subset; for such documents, the rule that an entity must be declared is a well-formedness 
constraint only if standalone='yes'. 

Validity constraint: Entity Declared 

In a document with an external subset or parameter entity references with "standalone='no'", the Name given in the entity 
reference MUST match that in an entity declaration. For interoperability, valid documents SHOULD declare the entities amp, 
lt, gt, apos, quot, in the form specified in 4.6 Predefined Entities. The declaration of a parameter entity MUST precede 
any reference to it. Similarly, the declaration of a general entity MUST precede any attribute-list declaration containing a 
default value with a direct or indirect reference to that general entity. 

Well-formedness constraint: Parsed Entity 

An entity reference MUST NOT contain the name of an unparsed entity. Unparsed entities may be referred to only in 
attribute values declared to be of type ENTITY or ENTITIES. 

Well-formedness constraint: No Recursion 

A parsed entity MUST NOT contain a recursive reference to itself, either directly or indirectly. 

Well-formedness constraint: In DTD 

Parameter-entity references MUST NOT appear outside the DTD. 

Examples of character and entity references: 

Type <key>less-than</key> (&#x3C;) to save options. 
This document was prepared on &docdate; and 
is classified &security-level;. 

Example of a parameter-entity reference: 

<!-- declare the parameter entity "ISOLat2"... --> 
<!ENTITY % ISOLat2 
SYSTEM "http://www.xml.com/iso/isolat2-xml.entities" > 
<!-- ... now reference it. --> 
%ISOLat2; 

4.2 Entity Declarations 

[66]   CharRef    ::=   '&#' [0-9]+ ';' 
| '&#x' [0-9a-fA-F]+ ';' [WFC: Legal Character]

[67]   Reference    ::=   EntityRef | CharRef
[68]   EntityRef    ::=   '&' Name ';' [WFC: Entity Declared]

[VC: Entity Declared]
[WFC: Parsed Entity]
[WFC: No Recursion]

[69]   PEReference    ::=   '%' Name ';' [VC: Entity Declared]
[WFC: No Recursion]
[WFC: In DTD]
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[Definition: Entities are declared thus:]  

Entity Declaration 

The Name identifies the entity in an entity reference or, in the case of an unparsed entity, in the value of an ENTITY or ENTITIES 
attribute. If the same entity is declared more than once, the first declaration encountered is binding; at user option, an XML 
processor MAY issue a warning if entities are declared multiple times. 

4.2.1 Internal Entities 

[Definition: If the entity definition is an EntityValue, the defined entity is called an internal entity. There is no separate physical 
storage object, and the content of the entity is given in the declaration.] Note that some processing of entity and character 
references in the literal entity value may be required to produce the correct replacement text: see 4.5 Construction of Entity 
Replacement Text. 

An internal entity is a parsed entity. 

Example of an internal entity declaration: 

<!ENTITY Pub-Status "This is a pre-release of the 
specification."> 

4.2.2 External Entities 

[Definition: If the entity is not internal, it is an external entity, declared as follows:]  

External Entity Declaration 

If the NDataDecl is present, this is a general unparsed entity; otherwise it is a parsed entity. 

Validity constraint: Notation Declared 

The Name MUST match the declared name of a notation. 

[Definition: The SystemLiteral is called the entity's system identifier. It is meant to be converted to a URI reference (as defined 
in [IETF RFC 3986]), as part of the process of dereferencing it to obtain input for the XML processor to construct the entity's 
replacement text.] It is an error for a fragment identifier (beginning with a # character) to be part of a system identifier. Unless 
otherwise provided by information outside the scope of this specification (e.g. a special XML element type defined by a particular 
DTD, or a processing instruction defined by a particular application specification), relative URIs are relative to the location of the 
resource within which the entity declaration occurs. This is defined to be the external entity containing the '<' which starts the 
declaration, at the point when it is parsed as a declaration. A URI might thus be relative to the document entity, to the entity 
containing the external DTD subset, or to some other external parameter entity. Attempts to retrieve the resource identified by a 
URI may be redirected at the parser level (for example, in an entity resolver) or below (at the protocol level, for example, via an 
HTTP Location: header). In the absence of additional information outside the scope of this specification within the resource, the 
base URI of a resource is always the URI of the actual resource returned. In other words, it is the URI of the resource retrieved 
after all redirection has occurred. 

System identifiers (and other XML strings meant to be used as URI references) may contain characters that, according to [IETF 
RFC 3986], must be escaped before a URI can be used to retrieve the referenced resource. The characters to be escaped are 
the control characters #x0 to #x1F and #x7F (most of which cannot appear in XML), space #x20, the delimiters '<' #x3C, '>' #x3E 
and '"' #x22, the unwise characters '{' #x7B, '}' #x7D, '|' #x7C, '\' #x5C, '^' #x5E and '`' #x60, as well as all characters above #x7F. 
Since escaping is not always a fully reversible process, it MUST be performed only when absolutely necessary and as late as 
possible in a processing chain. In particular, neither the process of converting a relative URI to an absolute one nor the process 
of passing a URI reference to a process or software component responsible for dereferencing it SHOULD trigger escaping. 
When escaping does occur, it MUST be performed as follows: 

1. Each character to be escaped is represented in UTF-8 [Unicode] as one or more bytes. 

2. The resulting bytes are escaped with the URI escaping mechanism (that is, converted to %HH, where HH is the 
hexadecimal notation of the byte value). 

3. The original character is replaced by the resulting character sequence. 

[Definition: In addition to a system identifier, an external identifier may include a public identifier.] An XML processor attempting 
to retrieve the entity's content may use any combination of the public and system identifiers as well as additional information 
outside the scope of this specification to try to generate an alternative URI reference. If the processor is unable to do so, it MUST 

[70]   EntityDecl    ::=   GEDecl | PEDecl 
[71]   GEDecl    ::=   '<!ENTITY' S Name S EntityDef S? '>'
[72]   PEDecl    ::=   '<!ENTITY' S '%' S Name S PEDef S? '>'
[73]   EntityDef    ::=   EntityValue | (ExternalID NDataDecl?)
[74]   PEDef    ::=   EntityValue | ExternalID 

[75]   ExternalID    ::=   'SYSTEM' S SystemLiteral 
| 'PUBLIC' S PubidLiteral S SystemLiteral

[76]   NDataDecl    ::=   S 'NDATA' S Name [VC: Notation Declared]
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use the URI reference specified in the system literal. Before a match is attempted, all strings of white space in the public 
identifier MUST be normalized to single space characters (#x20), and leading and trailing white space MUST be removed. 

Examples of external entity declarations: 

<!ENTITY open-hatch 
SYSTEM "http://www.textuality.com/boilerplate/OpenHatch.xml"> 
<!ENTITY open-hatch 
PUBLIC "-//Textuality//TEXT Standard open-hatch boilerplate//EN" 
"http://www.textuality.com/boilerplate/OpenHatch.xml"> 
<!ENTITY hatch-pic 
SYSTEM "../grafix/OpenHatch.gif" 
NDATA gif > 

4.3 Parsed Entities 

4.3.1 The Text Declaration 

External parsed entities SHOULD each begin with a text declaration. 

Text Declaration 

The text declaration MUST be provided literally, not by reference to a parsed entity. The text declaration MUST NOT appear at 
any position other than the beginning of an external parsed entity. The text declaration in an external parsed entity is not 
considered part of its replacement text. 

4.3.2 Well-Formed Parsed Entities 

The document entity is well-formed if it matches the production labeled document. An external general parsed entity is well-
formed if it matches the production labeled extParsedEnt. All external parameter entities are well-formed by definition. 

Note: 

Only parsed entities that are referenced directly or indirectly within the document are required to be well-formed. 

Well-Formed External Parsed Entity 

An internal general parsed entity is well-formed if its replacement text matches the production labeled content. All internal 
parameter entities are well-formed by definition. 

A consequence of well-formedness in general entities is that the logical and physical structures in an XML document are properly 
nested; no start-tag, end-tag, empty-element tag, element, comment, processing instruction, character reference, or entity 
reference can begin in one entity and end in another. 

4.3.3 Character Encoding in Entities 

Each external parsed entity in an XML document may use a different encoding for its characters. All XML processors MUST be 
able to read entities in both the UTF-8 and UTF-16 encodings. The terms "UTF-8" and "UTF-16" in this specification do not apply 
to character encodings with any other labels, even if the encodings or labels are very similar to UTF-8 or UTF-16. 

Entities encoded in UTF-16 MUST and entities encoded in UTF-8 MAY begin with the Byte Order Mark described in ISO/IEC 
10646 [ISO/IEC 10646] or Unicode [Unicode] (the ZERO WIDTH NO-BREAK SPACE character, #xFEFF). This is an encoding 
signature, not part of either the markup or the character data of the XML document. XML processors MUST be able to use this 
character to differentiate between UTF-8 and UTF-16 encoded documents. 

Although an XML processor is required to read only entities in the UTF-8 and UTF-16 encodings, it is recognized that other 
encodings are used around the world, and it may be desired for XML processors to read entities that use them. In the absence of 
external character encoding information (such as MIME headers), parsed entities which are stored in an encoding other than 
UTF-8 or UTF-16 MUST begin with a text declaration (see 4.3.1 The Text Declaration) containing an encoding declaration: 

Encoding Declaration 

In the document entity, the encoding declaration is part of the XML declaration. The EncName is the name of the encoding used. 

In an encoding declaration, the values "UTF-8", "UTF-16", "ISO-10646-UCS-2", and "ISO-10646-UCS-4" SHOULD be used for the 
various encodings and transformations of Unicode / ISO/IEC 10646, the values "ISO-8859-1", "ISO-8859-2", ... "ISO-8859-
n" (where n is the part number) SHOULD be used for the parts of ISO 8859, and the values "ISO-2022-JP", "Shift_JIS", and 
"EUC-JP" SHOULD be used for the various encoded forms of JIS X-0208-1997. It is RECOMMENDED that character encodings 
registered (as charsets) with the Internet Assigned Numbers Authority [IANA-CHARSETS], other than those just listed, be 

[77]   TextDecl    ::=   '<?xml' VersionInfo? EncodingDecl S? '?>'

[78]   extParsedEnt    ::=   ( TextDecl? content ) - ( Char* RestrictedChar Char* )

[80]   EncodingDecl    ::=   S 'encoding' Eq ('"' EncName '"' | "'" EncName 
"'" ) 

[81]   EncName    ::=   [A-Za-z] ([A-Za-z0-9._] | '-')* /* Encoding name contains only Latin 
characters */

Page 21 of 31Extensible Markup Language (XML) 1.1 (Second Edition)

12/2/2010http://www.w3.org/TR/2006/REC-xml11-20060816/



referred to using their registered names; other encodings SHOULD use names starting with an "x-" prefix. XML processors 
SHOULD match character encoding names in a case-insensitive way and SHOULD either interpret an IANA-registered name as 
the encoding registered at IANA for that name or treat it as unknown (processors are, of course, not required to support all IANA-
registered encodings). 

In the absence of information provided by an external transport protocol (e.g. HTTP or MIME), it is a fatal error for an entity 
including an encoding declaration to be presented to the XML processor in an encoding other than that named in the declaration, 
or for an entity which begins with neither a Byte Order Mark nor an encoding declaration to use an encoding other than UTF-8. 
Note that since ASCII is a subset of UTF-8, ordinary ASCII entities do not strictly need an encoding declaration. 

It is a fatal error for a TextDecl to occur other than at the beginning of an external entity. 

It is a fatal error when an XML processor encounters an entity with an encoding that it is unable to process. It is a fatal error if an 
XML entity is determined (via default, encoding declaration, or higher-level protocol) to be in a certain encoding but contains byte 
sequences that are not legal in that encoding. Specifically, it is a fatal error if an entity encoded in UTF-8 contains any irregular 
code unit sequences, as defined in Unicode [Unicode]. Unless an encoding is determined by a higher-level protocol, it is also a 
fatal error if an XML entity contains no encoding declaration and its content is not legal UTF-8 or UTF-16. 

Examples of text declarations containing encoding declarations: 

<?xml encoding='UTF-8'?> 
<?xml encoding='EUC-JP'?> 

4.3.4 Version Information in Entities 

Each entity, including the document entity, can be separately declared as XML 1.0 or XML 1.1. The version declaration 
appearing in the document entity determines the version of the document as a whole. An XML 1.1 document may invoke XML 
1.0 external entities, so that otherwise duplicated versions of external entities, particularly DTD external subsets, need not be 
maintained. However, in such a case the rules of XML 1.1 are applied to the entire document. 

If an entity (including the document entity) is not labeled with a version number, it is treated as if labeled as version 1.0. 

4.4 XML Processor Treatment of Entities and References 

The table below summarizes the contexts in which character references, entity references, and invocations of unparsed entities 
might appear and the REQUIRED behavior of an XML processor in each case. The labels in the leftmost column describe the 
recognition context:  

Reference in Content 

as a reference anywhere after the start-tag and before the end-tag of an element; corresponds to the nonterminal content. 

Reference in Attribute Value 

as a reference within either the value of an attribute in a start-tag, or a default value in an attribute declaration; corresponds 
to the nonterminal AttValue. 

Occurs as Attribute Value 

as a Name, not a reference, appearing either as the value of an attribute which has been declared as type ENTITY, or as 
one of the space-separated tokens in the value of an attribute which has been declared as type ENTITIES. 

Reference in Entity Value 

as a reference within a parameter or internal entity's literal entity value in the entity's declaration; corresponds to the 
nonterminal EntityValue. 

Reference in DTD 

as a reference within either the internal or external subsets of the DTD, but outside of an EntityValue, AttValue, PI, 
Comment, SystemLiteral, PubidLiteral, or the contents of an ignored conditional section (see 3.4 Conditional Sections). 

. 

Entity Type
Character

Parameter Internal General External Parsed General Unparsed

Reference in Content Not recognized Included Included if validating Forbidden Included 

Reference in Attribute Value Not recognized Included in literal Forbidden Forbidden Included 

Occurs as Attribute Value Not recognized Forbidden Forbidden Notify Not recognized 

Reference in EntityValue Included in literal Bypassed Bypassed Error Included 

Reference in DTD Included as PE Forbidden Forbidden Forbidden Forbidden 

Page 22 of 31Extensible Markup Language (XML) 1.1 (Second Edition)

12/2/2010http://www.w3.org/TR/2006/REC-xml11-20060816/



4.4.1 Not Recognized 

Outside the DTD, the % character has no special significance; thus, what would be parameter entity references in the DTD are 
not recognized as markup in content. Similarly, the names of unparsed entities are not recognized except when they appear in 
the value of an appropriately declared attribute. 

4.4.2 Included 

[Definition: An entity is included when its replacement text is retrieved and processed, in place of the reference itself, as though 
it were part of the document at the location the reference was recognized.] The replacement text may contain both character 
data and (except for parameter entities) markup, which MUST be recognized in the usual way. (The string "AT&amp;T;" expands 
to "AT&T;" and the remaining ampersand is not recognized as an entity-reference delimiter.) A character reference is included 
when the indicated character is processed in place of the reference itself.  

4.4.3 Included If Validating 

When an XML processor recognizes a reference to a parsed entity, in order to validate the document, the processor MUST 
include its replacement text. If the entity is external, and the processor is not attempting to validate the XML document, the 
processor MAY, but need not, include the entity's replacement text. If a non-validating processor does not include the 
replacement text, it MUST inform the application that it recognized, but did not read, the entity. 

This rule is based on the recognition that the automatic inclusion provided by the SGML and XML entity mechanism, primarily 
designed to support modularity in authoring, is not necessarily appropriate for other applications, in particular document 
browsing. Browsers, for example, when encountering an external parsed entity reference, might choose to provide a visual 
indication of the entity's presence and retrieve it for display only on demand. 

4.4.4 Forbidden 

The following are forbidden, and constitute fatal errors: 

the appearance of a reference to an unparsed entity, except in the EntityValue in an entity declaration. 

the appearance of any character or general-entity reference in the DTD except within an EntityValue or AttValue. 

a reference to an external entity in an attribute value. 

4.4.5 Included in Literal 

When an entity reference appears in an attribute value, or a parameter entity reference appears in a literal entity value, its 
replacement text MUST be processed in place of the reference itself as though it were part of the document at the location the 
reference was recognized, except that a single or double quote character in the replacement text MUST always be treated as a 
normal data character and MUST NOT terminate the literal. For example, this is well-formed: 

<!ENTITY % YN '"Yes"' > 
<!ENTITY WhatHeSaid "He said %YN;" > 

while this is not: 

<!ENTITY EndAttr "27'" > 
<element attribute='a-&EndAttr;> 

4.4.6 Notify 

When the name of an unparsed entity appears as a token in the value of an attribute of declared type ENTITY or ENTITIES, a 
validating processor MUST inform the application of the system and public (if any) identifiers for both the entity and its 
associated notation. 

4.4.7 Bypassed 

When a general entity reference appears in the EntityValue in an entity declaration, it MUST be bypassed and left as is. 

4.4.8 Included as PE 

Just as with external parsed entities, parameter entities need only be included if validating. When a parameter-entity reference is 
recognized in the DTD and included, its replacement text MUST be enlarged by the attachment of one leading and one following 
space (#x20) character; the intent is to constrain the replacement text of parameter entities to contain an integral number of 
grammatical tokens in the DTD. This behavior MUST NOT apply to parameter entity references within entity values; these are 
described in 4.4.5 Included in Literal. 

4.4.9 Error 

It is an error for a reference to an unparsed entity to appear in the EntityValue in an entity declaration. 

4.5 Construction of Entity Replacement Text 

In discussing the treatment of entities, it is useful to distinguish two forms of the entity's value. [Definition: For an internal entity, 
the literal entity value is the quoted string actually present in the entity declaration, corresponding to the non-terminal 
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EntityValue.] [Definition: For an external entity, the literal entity value is the exact text contained in the entity.] [Definition: For an 
internal entity, the replacement text is the content of the entity, after replacement of character references and parameter-entity 
references.] [Definition: For an external entity, the replacement text is the content of the entity, after stripping the text 
declaration (leaving any surrounding white space) if there is one but without any replacement of character references or 
parameter-entity references.]  

The literal entity value as given in an internal entity declaration (EntityValue) may contain character, parameter-entity, and 
general-entity references. Such references MUST be contained entirely within the literal entity value. The actual replacement text 
that is included (or included in literal) as described above MUST contain the replacement text of any parameter entities referred 
to, and MUST contain the character referred to, in place of any character references in the literal entity value; however, general-
entity references MUST be left as-is, unexpanded. For example, given the following declarations: 

<!ENTITY % pub    "&#xc9;ditions Gallimard" > 
<!ENTITY   rights "All rights reserved" > 
<!ENTITY   book   "La Peste: Albert Camus, 
&#xA9; 1947 %pub;. &rights;" > 

then the replacement text for the entity "book" is: 

La Peste: Albert Camus, 
© 1947 Éditions Gallimard. &rights; 

The general-entity reference "&rights;" would be expanded should the reference "&book;" appear in the document's content or 
an attribute value. 

These simple rules may have complex interactions; for a detailed discussion of a difficult example, see C Expansion of Entity 
and Character References. 

4.6 Predefined Entities 

[Definition: Entity and character references may both be used to escape the left angle bracket, ampersand, and other delimiters. 
A set of general entities (amp, lt, gt, apos, quot) is specified for this purpose. Numeric character references may also be used; 
they are expanded immediately when recognized and MUST be treated as character data, so the numeric character references 
"&#60;" and "&#38;" may be used to escape < and & when they occur in character data.]  

All XML processors MUST recognize these entities whether they are declared or not. For interoperability, valid XML documents 
SHOULD declare these entities, like any others, before using them. If the entities lt or amp are declared, they MUST be declared 
as internal entities whose replacement text is a character reference to the respective character (less-than sign or ampersand) 
being escaped; the double escaping is REQUIRED for these entities so that references to them produce a well-formed result. If 
the entities gt, apos, or quot are declared, they MUST be declared as internal entities whose replacement text is the single 
character being escaped (or a character reference to that character; the double escaping here is OPTIONAL but harmless). For 
example: 

<!ENTITY lt     "&#38;#60;"> 
<!ENTITY gt     "&#62;"> 
<!ENTITY amp    "&#38;#38;"> 
<!ENTITY apos   "&#39;"> 
<!ENTITY quot   "&#34;"> 

4.7 Notation Declarations 

[Definition: Notations identify by name the format of unparsed entities, the format of elements which bear a notation attribute, or 
the application to which a processing instruction is addressed.]  

[Definition: Notation declarations provide a name for the notation, for use in entity and attribute-list declarations and in attribute 
specifications, and an external identifier for the notation which may allow an XML processor or its client application to locate a 
helper application capable of processing data in the given notation.]  

Notation Declarations 

Validity constraint: Unique Notation Name 

A given Name MUST NOT be declared in more than one notation declaration. 

XML processors MUST provide applications with the name and external identifier(s) of any notation declared and referred to in 
an attribute value, attribute definition, or entity declaration. They MAY additionally resolve the external identifier into the system 
identifier, file name, or other information needed to allow the application to call a processor for data in the notation described. (It 
is not an error, however, for XML documents to declare and refer to notations for which notation-specific applications are not 
available on the system where the XML processor or application is running.) 

4.8 Document Entity 

[Definition: The document entity serves as the root of the entity tree and a starting-point for an XML processor.] This 
specification does not specify how the document entity is to be located by an XML processor; unlike other entities, the document 

[82]   NotationDecl    ::=   '<!NOTATION' S Name S (ExternalID | PublicID) S? '>' [VC: Unique Notation Name]
[83]   PublicID    ::=   'PUBLIC' S PubidLiteral 
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entity has no name and might well appear on a processor input stream without any identification at all. 

5 Conformance 

5.1 Validating and Non-Validating Processors 

Conforming XML processors fall into two classes: validating and non-validating. 

Validating and non-validating processors alike MUST report violations of this specification's well-formedness constraints in the 
content of the document entity and any other parsed entities that they read. 

[Definition: Validating processors MUST, at user option, report violations of the constraints expressed by the declarations in the 
DTD, and failures to fulfill the validity constraints given in this specification.] To accomplish this, validating XML processors 
MUST read and process the entire DTD and all external parsed entities referenced in the document. 

Non-validating processors are REQUIRED to check only the document entity, including the entire internal DTD subset, for well-
formedness. [Definition: While they are not required to check the document for validity, they are REQUIRED to process all the 
declarations they read in the internal DTD subset and in any parameter entity that they read, up to the first reference to a 
parameter entity that they do not read; that is to say, they MUST use the information in those declarations to normalize attribute 
values, include the replacement text of internal entities, and supply default attribute values.] Except when standalone="yes", 
they MUST NOT process entity declarations or attribute-list declarations encountered after a reference to a parameter entity that 
is not read, since the entity may have contained overriding declarations; when standalone="yes", processors MUST process 
these declarations. 

Note that when processing invalid documents with a non-validating processor the application may not be presented with 
consistent information. For example, several requirements for uniqueness within the document may not be met, including more 
than one element with the same id, duplicate declarations of elements or notations with the same name, etc. In these cases the 
behavior of the parser with respect to reporting such information to the application is undefined. 

XML 1.1 processors MUST be able to process both XML 1.0 and XML 1.1 documents. Programs which generate XML SHOULD 
generate XML 1.0, unless one of the specific features of XML 1.1 is required. 

5.2 Using XML Processors 

The behavior of a validating XML processor is highly predictable; it must read every piece of a document and report all well-
formedness and validity violations. Less is required of a non-validating processor; it need not read any part of the document 
other than the document entity. This has two effects that may be important to users of XML processors: 

Certain well-formedness errors, specifically those that require reading external entities, may fail to be detected by a non-
validating processor. Examples include the constraints entitled Entity Declared, Parsed Entity, and No Recursion, as well 
as some of the cases described as forbidden in 4.4 XML Processor Treatment of Entities and References. 

The information passed from the processor to the application may vary, depending on whether the processor reads 
parameter and external entities. For example, a non-validating processor may fail to normalize attribute values, include the 
replacement text of internal entities, or supply default attribute values, where doing so depends on having read declarations 
in external or parameter entities. 

For maximum reliability in interoperating between different XML processors, applications which use non-validating processors 
SHOULD NOT rely on any behaviors not required of such processors. Applications which require DTD facilities not related to 
validation (such as the declaration of default attributes and internal entities that are or may be specified in external entities ) 
SHOULD use validating XML processors. 

6 Notation 

The formal grammar of XML is given in this specification using a simple Extended Backus-Naur Form (EBNF) notation. Each rule 
in the grammar defines one symbol, in the form 

symbol ::= expression 

Symbols are written with an initial capital letter if they are the start symbol of a regular language, otherwise with an initial 
lowercase letter. Literal strings are quoted. 

Within the expression on the right-hand side of a rule, the following expressions are used to match strings of one or more 
characters:  

#xN  

where N is a hexadecimal integer, the expression matches the character whose number (code point) in ISO/IEC 10646 is N. 
The number of leading zeros in the #xN form is insignificant. 

[a-zA-Z], [#xN-#xN]  

matches any Char with a value in the range(s) indicated (inclusive). 

[abc], [#xN#xN#xN]  
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matches any Char with a value among the characters enumerated. Enumerations and ranges can be mixed in one set of 
brackets. 

[^a-z], [^#xN-#xN]  

matches any Char with a value outside the range indicated. 

[^abc], [^#xN#xN#xN]  

matches any Char with a value not among the characters given. Enumerations and ranges of forbidden values can be 
mixed in one set of brackets. 

"string"  

matches a literal string matching that given inside the double quotes. 

'string'  

matches a literal string matching that given inside the single quotes. 

These symbols may be combined to match more complex patterns as follows, where A and B represent simple expressions:  

(expression) 

expression is treated as a unit and may be combined as described in this list. 

A?  

matches A or nothing; optional A. 

A B  

matches A followed by B. This operator has higher precedence than alternation; thus A B | C D is identical to (A B) | (C 
D). 

A | B  

matches A or B. 

A - B  

matches any string that matches A but does not match B. 

A+  

matches one or more occurrences of A. Concatenation has higher precedence than alternation; thus A+ | B+ is identical to 
(A+) | (B+). 

A*  

matches zero or more occurrences of A. Concatenation has higher precedence than alternation; thus A* | B* is identical to 
(A*) | (B*). 

Other notations used in the productions are:  

/* ... */  

comment. 

[ wfc: ... ]  

well-formedness constraint; this identifies by name a constraint on well-formed documents associated with a production. 

[ vc: ... ]  

validity constraint; this identifies by name a constraint on valid documents associated with a production. 

A References 

A.1 Normative References 

IANA-CHARSETS 
(Internet Assigned Numbers Authority) Official Names for Character Sets, ed. Keld Simonsen et al. (See 
http://www.iana.org/assignments/character-sets.) 

IETF RFC 2119 
IETF (Internet Engineering Task Force). RFC 2119: Key words for use in RFCs to Indicate Requirement Levels. Scott 
Bradner, 1997. (See http://www.ietf.org/rfc/rfc2119.txt.) 
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IETF (Internet Engineering Task Force). RFC 3066: Tags for the Identification of Languages, ed. H. Alvestrand. 2001. (See 
http://www.ietf.org/rfc/rfc3066.txt.) 
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ISO (International Organization for Standardization). ISO/IEC 10646-1:2000. Information technology — Universal Multiple-
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Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 2: Supplementary Planes, as, from 
time to time, amended, replaced by a new edition or expanded by the addition of new parts. [Geneva]: International 
Organization for Standardization. (See http://www.iso.ch for the latest version.) 

Unicode 
The Unicode Consortium. The Unicode Standard, Version 4.0. Reading, Mass.: Addison-Wesley, 2003, as updated from 
time to time by the publication of new versions. (See http://www.unicode.org/unicode/standard/versions for the latest 
version and additional information on versions of the standard and of the Unicode Character Database). 

XML-1.0 
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James Clark. Comparison of SGML and XML. (See http://www.w3.org/TR/NOTE-sgml-xml-971215.) 

IANA-LANGCODES 
(Internet Assigned Numbers Authority) Registry of Language Tags, ed. Keld Simonsen et al. (See 
http://www.iana.org/assignments/language-tags.) 
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IETF (Internet Engineering Task Force). RFC 2141: URN Syntax, ed. R. Moats. 1997. (See 
http://www.ietf.org/rfc/rfc2141.txt.) 
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IETF (Internet Engineering Task Force). RFC 3023: XML Media Types. eds. M. Murata, S. St.Laurent, D. Kohn. 2001. (See 
http://www.ietf.org/rfc/rfc3023.txt.) 
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IETF (Internet Engineering Task Force). RFC 2781: UTF-16, an encoding of ISO 10646, ed. P. Hoffman, F. Yergeau. 2000. 
(See http://www.ietf.org/rfc/rfc2781.txt.) 
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[Geneva]: International Organization for Standardization, 1988. 
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(International Organization for Standardization). ISO 3166-1:1997 (E). Codes for the representation of names of countries 
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ISO (International Organization for Standardization). ISO 8879:1986(E). Information processing — Text and Office 
Systems — Standard Generalized Markup Language (SGML). First edition — 1986-10-15. [Geneva]: International 
Organization for Standardization, 1986.  

ISO/IEC 10744 
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Extended Facilities Annexe. [Geneva]: International Organization for Standardization, 1996.  
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and Processing Languages. [Geneva]: International Organization for Standardization, 1998. (See 
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World Wide Web Consortium, 1999. (See http://www.w3.org/TR/REC-xml-names/.) 

B Definitions for Character Normalization 

This appendix contains the necessary definitions for character normalization. For additional background information and 
examples, see [Charmod]. 

[Definition: Text is said to be in a Unicode encoding form if it is encoded in UTF-8, UTF-16 or UTF-32.]  
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[Definition: Legacy encoding is taken to mean any character encoding not based on Unicode.]  

[Definition: A normalizing transcoder is a transcoder that converts from a legacy encoding to a Unicode encoding form and 
ensures that the result is in Unicode Normalization Form C (see UAX #15 [Unicode]).]  

[Definition: A character escape is a syntactic device defined in a markup or programming language that allows one or more of:]  

1. expressing syntax-significant characters while disregarding their significance in the syntax of the language, or 

2. expressing characters not representable in the character encoding chosen for an instance of the language, or 

3. expressing characters in general, without use of the corresponding character codes. 

[Definition: Certified text is text which satisfies at least one of the following conditions:]  

1. it has been confirmed through inspection that the text is in normalized form 

2. the source text-processing component is identified and is known to produce only normalized text. 

[Definition: Text is, for the purposes of this specification, Unicode-normalized if it is in a Unicode encoding form and is in 
Unicode Normalization Form C, according to a version of Unicode Standard Annex #15: Unicode Normalization Forms [Unicode] 
at least as recent as the oldest version of the Unicode Standard that contains all the characters actually present in the text, but 
no earlier than version 3.2.]  

[Definition: Text is include-normalized if:]  

1. the text is Unicode-normalized and does not contain any character escapes or includes whose expansion would cause the 
text to become no longer Unicode-normalized; or 

2. the text is in a legacy encoding and, if it were transcoded to a Unicode encoding form by a normalizing transcoder, the 
resulting text would satisfy clause 1 above. 

[Definition: A composing character is a character that is one or both of the following:]  

1. the second character in the canonical decomposition mapping of some primary composite (as defined in D3 of UAX #15 
[Unicode]), or 

2. of non-zero canonical combining class (as defined in Unicode [Unicode]). 

[Definition: Text is fully-normalized if:]  

1. the text is in a Unicode encoding form, is include-normalized and none of the relevant constructs comprising the text begin 
with a composing character or a character escape representing a composing character; or 

2. the text is in a legacy encoding and, if it were transcoded to a Unicode encoding form by a normalizing transcoder, the 
resulting text would satisfy clause 1 above. 

C Expansion of Entity and Character References (Non-Normative) 

This appendix contains some examples illustrating the sequence of entity- and character-reference recognition and expansion, 
as specified in 4.4 XML Processor Treatment of Entities and References. 

If the DTD contains the declaration 

<!ENTITY example "<p>An ampersand (&#38;#38;) may be escaped 
numerically (&#38;#38;#38;) or with a general entity 
(&amp;amp;).</p>" > 

then the XML processor will recognize the character references when it parses the entity declaration, and resolve them before 
storing the following string as the value of the entity "example": 

<p>An ampersand (&#38;) may be escaped 
numerically (&#38;#38;) or with a general entity 
(&amp;amp;).</p> 

A reference in the document to "&example;" will cause the text to be reparsed, at which time the start- and end-tags of the p 
element will be recognized and the three references will be recognized and expanded, resulting in a p element with the following 
content (all data, no delimiters or markup): 

An ampersand (&) may be escaped 
numerically (&#38;) or with a general entity 
(&amp;). 

A more complex example will illustrate the rules and their effects fully. In the following example, the line numbers are solely for 
reference. 
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1 <?xml version='1.1'?> 
2 <!DOCTYPE test [ 
3 <!ELEMENT test (#PCDATA) > 
4 <!ENTITY % xx '&#37;zz;'> 
5 <!ENTITY % zz '&#60;!ENTITY tricky "error-prone" >' > 
6 %xx; 
7 ]> 
8 <test>This sample shows a &tricky; method.</test> 

This produces the following: 

in line 4, the reference to character 37 is expanded immediately, and the parameter entity "xx" is stored in the symbol table 
with the value "%zz;". Since the replacement text is not rescanned, the reference to parameter entity "zz" is not recognized. 
(And it would be an error if it were, since "zz" is not yet declared.) 

in line 5, the character reference "&#60;" is expanded immediately and the parameter entity "zz" is stored with the 
replacement text "<!ENTITY tricky "error-prone">", which is a well-formed entity declaration. 

in line 6, the reference to "xx" is recognized, and the replacement text of "xx" (namely "%zz;") is parsed. The reference to 
"zz" is recognized in its turn, and its replacement text ("<!ENTITY tricky "error-prone">") is parsed. The general entity 
"tricky" has now been declared, with the replacement text "error-prone". 

in line 8, the reference to the general entity "tricky" is recognized, and it is expanded, so the full content of the test 
element is the self-describing (and ungrammatical) string This sample shows a error-prone method.  

D Deterministic Content Models (Non-Normative) 

As noted in 3.2.1 Element Content, it is required that content models in element type declarations be deterministic. This 
requirement is for compatibility with SGML (which calls deterministic content models "unambiguous"); XML processors built 
using SGML systems may flag non-deterministic content models as errors. 

For example, the content model ((b, c) | (b, d)) is non-deterministic, because given an initial b the XML processor cannot 
know which b in the model is being matched without looking ahead to see which element follows the b. In this case, the two 
references to b can be collapsed into a single reference, making the model read (b, (c | d)). An initial b now clearly matches 
only a single name in the content model. The processor doesn't need to look ahead to see what follows; either c or d would be 
accepted. 

More formally: a finite state automaton may be constructed from the content model using the standard algorithms, e.g. algorithm 
3.5 in section 3.9 of Aho, Sethi, and Ullman [Aho/Ullman]. In many such algorithms, a follow set is constructed for each position 
in the regular expression (i.e., each leaf node in the syntax tree for the regular expression); if any position has a follow set in 
which more than one following position is labeled with the same element type name, then the content model is in error and may 
be reported as an error. 

Algorithms exist which allow many but not all non-deterministic content models to be reduced automatically to equivalent 
deterministic models; see Brüggemann-Klein 1991 [Brüggemann-Klein]. 

E Autodetection of Character Encodings (Non-Normative) 

The XML encoding declaration functions as an internal label on each entity, indicating which character encoding is in use. Before 
an XML processor can read the internal label, however, it apparently has to know what character encoding is in use — which is 
what the internal label is trying to indicate. In the general case, this is a hopeless situation. It is not entirely hopeless in XML, 
however, because XML limits the general case in two ways: each implementation is assumed to support only a finite set of 
character encodings, and the XML encoding declaration is restricted in position and content in order to make it feasible to 
autodetect the character encoding in use in each entity in normal cases. Also, in many cases other sources of information are 
available in addition to the XML data stream itself. Two cases may be distinguished, depending on whether the XML entity is 
presented to the processor without, or with, any accompanying (external) information. We consider the first case first. 

E.1 Detection Without External Encoding Information 

Because each XML entity not accompanied by external encoding information and not in UTF-8 or UTF-16 encoding must begin 
with an XML encoding declaration, in which the first characters must be '<?xml', any conforming processor can detect, after two 
to four octets of input, which of the following cases apply. In reading this list, it may help to know that in UCS-4, '<' is 
"#x0000003C" and '?' is "#x0000003F", and the Byte Order Mark required of UTF-16 data streams is "#xFEFF". The notation ## is 
used to denote any byte value except that two consecutive ##s cannot be both 00. 

With a Byte Order Mark: 

Without a Byte Order Mark: 

00 00 FE FF UCS-4, big-endian machine (1234 order)
FF FE 00 00 UCS-4, little-endian machine (4321 order)
00 00 FF FE UCS-4, unusual octet order (2143)
FE FF 00 00 UCS-4, unusual octet order (3412)
FE FF ## ## UTF-16, big-endian
FF FE ## ## UTF-16, little-endian
EF BB BF UTF-8
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Note: 

In cases above which do not require reading the encoding declaration to determine the encoding, section 4.3.3 still requires 
that the encoding declaration, if present, be read and that the encoding name be checked to match the actual encoding of 
the entity. Also, it is possible that new character encodings will be invented that will make it necessary to use the encoding 
declaration to determine the encoding, in cases where this is not required at present. 

This level of autodetection is enough to read the XML encoding declaration and parse the character-encoding identifier, which is 
still necessary to distinguish the individual members of each family of encodings (e.g. to tell UTF-8 from 8859, and the parts of 
8859 from each other, or to distinguish the specific EBCDIC code page in use, and so on). 

Because the contents of the encoding declaration are restricted to characters from the ASCII repertoire (however encoded), a 
processor can reliably read the entire encoding declaration as soon as it has detected which family of encodings is in use. Since 
in practice, all widely used character encodings fall into one of the categories above, the XML encoding declaration allows 
reasonably reliable in-band labeling of character encodings, even when external sources of information at the operating-system 
or transport-protocol level are unreliable. Character encodings such as UTF-7 that make overloaded usage of ASCII-valued 
bytes may fail to be reliably detected. 

Once the processor has detected the character encoding in use, it can act appropriately, whether by invoking a separate input 
routine for each case, or by calling the proper conversion function on each character of input. 

Like any self-labeling system, the XML encoding declaration will not work if any software changes the entity's character set or 
encoding without updating the encoding declaration. Implementors of character-encoding routines should be careful to ensure 
the accuracy of the internal and external information used to label the entity. 

E.2 Priorities in the Presence of External Encoding Information 

The second possible case occurs when the XML entity is accompanied by encoding information, as in some file systems and 
some network protocols. When multiple sources of information are available, their relative priority and the preferred method of 
handling conflict should be specified as part of the higher-level protocol used to deliver XML. In particular, please refer to [IETF 
RFC 3023] or its successor, which defines the text/xml and application/xml MIME types and provides some useful guidance. 
In the interests of interoperability, however, the following rule is recommended. 

If an XML entity is in a file, the Byte-Order Mark and encoding declaration are used (if present) to determine the character 
encoding. 

F W3C XML Working Group (Non-Normative) 

This specification was prepared and approved for publication by the W3C XML Working Group (WG). WG approval of this 
specification does not necessarily imply that all WG participants voted for its approval. The current and former members in the 
XML WG are: 

Jon Bosak, Sun (Chair)  
James Clark (Technical Lead)  
Tim Bray, Textuality and Netscape (XML Co-editor)  
Jean Paoli, Microsoft (XML Co-editor)  
C. M. Sperberg-McQueen, U. of Ill. (XML Co-editor)  
Dan Connolly, W3C (W3C Liaison)  
Paula Angerstein, Texcel 
Steve DeRose, INSO 
Dave Hollander, HP 
Eliot Kimber, ISOGEN 
Eve Maler, ArborText 
Tom Magliery, NCSA 
Murray Maloney, SoftQuad, Grif SA, Muzmo and Veo Systems 
MURATA Makoto (FAMILY Given), Fuji Xerox Information Systems 
Joel Nava, Adobe 
Conleth O'Connell, Vignette 
Peter Sharpe, SoftQuad 

00 00 00 3C 
UCS-4 or other encoding with a 32-bit code unit and ASCII characters encoded as ASCII values, in respectively 
big-endian (1234), little-endian (4321) and two unusual byte orders (2143 and 3412). The encoding declaration 
must be read to determine which of UCS-4 or other supported 32-bit encodings applies.

3C 00 00 00 
00 00 3C 00 
00 3C 00 00 

00 3C 00 3F UTF-16BE or big-endian ISO-10646-UCS-2 or other encoding with a 16-bit code unit in big-endian order and 
ASCII characters encoded as ASCII values (the encoding declaration must be read to determine which)

3C 00 3F 00 UTF-16LE or little-endian ISO-10646-UCS-2 or other encoding with a 16-bit code unit in little-endian order and 
ASCII characters encoded as ASCII values (the encoding declaration must be read to determine which)

3C 3F 78 6D 
UTF-8, ISO 646, ASCII, some part of ISO 8859, Shift-JIS, EUC, or any other 7-bit, 8-bit, or mixed-width encoding 
which ensures that the characters of ASCII have their normal positions, width, and values; the actual encoding 
declaration must be read to detect which of these applies, but since all of these encodings use the same bit 
patterns for the relevant ASCII characters, the encoding declaration itself may be read reliably

4C 6F A7 94 EBCDIC (in some flavor; the full encoding declaration must be read to tell which code page is in use)

Other UTF-8 without an encoding declaration, or else the data stream is mislabeled (lacking a required encoding 
declaration), corrupt, fragmentary, or enclosed in a wrapper of some kind
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John Tigue, DataChannel 

G W3C XML Core Working Group (Non-Normative) 

The second edition of this specification was prepared by the W3C XML Core Working Group (WG). The participants in the WG at 
the time of publication of this edition were: 

Leonid Arbouzov, Sun Microsystems 
John Cowan 
Andrew Fang, PTC-Arbortext 
Paul Grosso, PTC-Arbortext (Co-Chair)  
Konrad Lanz, A-SIT 
Philippe Le Hégaret, W3C (Staff Contact)  
Glenn Marcy, IBM 
Sandra Martinez, NIST 
Ravindrakumar R, CDAC 
Lew Shannon 
Henry Thompson, W3C (Staff Contact)  
Richard Tobin, University of Edinburgh 
Daniel Veillard 
Norman Walsh, Sun Microsystems (Co-Chair)  
François Yergeau 

H Production Notes (Non-Normative) 

This edition was encoded in a slightly modified version of the XMLspec DTD, 2.10. The XHTML versions were produced with a 
combination of the xmlspec.xsl, diffspec.xsl, and REC-xml.xsl XSLT stylesheets. 

I Suggestions for XML Names (Non-Normative) 

The following suggestions define what is believed to be best practice in the construction of XML names used as element names, 
attribute names, processing instruction targets, entity names, notation names, and the values of attributes of type ID, and are 
intended as guidance for document authors and schema designers. All references to Unicode are understood with respect to a 
particular version of the Unicode Standard greater than or equal to 3.0; which version should be used is left to the discretion of 
the document author or schema designer. 

The first two suggestions are directly derived from the rules given for identifiers in the Unicode Standard, version 3.0, and 
exclude all control characters, enclosing nonspacing marks, non-decimal numbers, private-use characters, punctuation 
characters (with the noted exceptions), symbol characters, unassigned codepoints, and white space characters. The other 
suggestions are mostly derived from [XML-1.0] Appendix B. 

1. The first character of any name should have a Unicode General Category of Ll, Lu, Lo, Lm, Lt, or Nl, or else be '_' #x5F. 

2. Characters other than the first should have a Unicode General Category of Ll, Lu, Lo, Lm, Lt, Mc, Mn, Nl, Nd, Pc, or Cf, or 
else be one of the following: '-' #x2D, '.' #x2E, ':' #x3A or '·' #xB7 (middle dot). Since Cf characters are not directly visible, 
they should be employed with caution and only when necessary, to avoid creating names which are distinct to XML 
processors but look the same to human beings. 

3. Ideographic characters which have a canonical decomposition (including those in the ranges [#xF900-#xFAFF] and 
[#x2F800-#x2FFFD], with 12 exceptions) should not be used in names.  

4. Characters which have a compatibility decomposition (those with a "compatibility formatting tag" in field 5 of the Unicode 
Character Database -- marked by field 5 beginning with a "<") should not be used in names. This suggestion does not 
apply to #x0E33 THAI CHARACTER SARA AM or #x0EB3 LAO CHARACTER AM, which despite their compatibility 
decompositions are in regular use in those scripts. 

5. Combining characters meant for use with symbols only (including those in the ranges [#x20D0-#x20EF] and [#x1D165-
#x1D1AD]) should not be used in names. 

6. The interlinear annotation characters ([#xFFF9-#xFFFB ]) should not be used in names. 

7. Variation selector characters should not be used in names. 

8. Names which are nonsensical, unpronounceable, hard to read, or easily confusable with other names should not be 
employed. 
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