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Abstract
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and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable
document and may be used as reference material or cited from another document. W3C's role in making
the Recommendation is to draw attention to the specification and to promote its widespread deployment.
This enhances the functionality and interoperability of the Web.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C
maintains a public list of any patent disclosures made in connection with the deliverables of the group; that
page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent
which the individual believes contains Essential Claim(s) must disclose the information in accordance with
section 6 of the W3C Patent Policy.
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This document defines a model-theoretic semantics for RDF graphs and the RDF and RDFS
vocabularies, providing an exact formal specification of when truth is preserved by transformations of RDF
or operations which derive RDF content from other RDF.

2. Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in
this specification are non-normative. Everything else in this specification is normative.

The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this specification
are to be interpreted as described in [RFC2119].

This specification, RDF 1.1 Semantics, is normative for RDF semantics and the validity of RDF inference
processes. It is not normative for many aspects of RDF meaning which are not described or specified by
this semantics, including social issues of how IRIs are assigned meanings in use and how the referents of
IRIs are related to Web content expressed in other media such as natural language texts.

3. Semantic Extensions and Entailment Regimes

RDF is intended for use as a base notation for a variety of extended notations such as OWL [OWL2-
OVERVIEW] and RIF [RIF-OVERVIEW], whose expressions can be encoded as RDF graphs which use a
particular vocabulary with a specially defined meaning. Also, particular IRI vocabularies may be given
meanings by other specifications or conventions. When such extra meanings are assumed, a given RDF
graph may support more extensive entailments than are sanctioned by the basic RDF semantics. In
general, the more assumptions that are made about the meanings of IRIs in an RDF graph, the more
entailments follow from those assumptions.

A particular such set of semantic assumptions is called a semantic extension. Each semantic extension
defines an entailment regime (used here in the same sense as in the SPARQL 1.1 Entailment Regime
recommendation [SPARQL11-ENTAILMENT] ) of entailments which are valid under that extension. RDFS,
described later in this document, is one such semantic extension. We will refer to entailment regimes by
names such as RDFS entailment, D-entailment, etc.

Semantic extensions MAY impose special syntactic conditions or restrictions upon RDF graphs, such as
requiring certain triples to be present, or prohibiting particular combinations of IRIs in triples, and MAY

consider RDF graphs which do not conform to these conditions to be errors. For example, RDF
statements of the form 

ex:a rdfs:subClassOf "Thing"̂ x̂sd:string .

are prohibited in the OWL semantic extension based on description logics [OWL2-SYNTAX]. In such
cases, basic RDF operations such as taking a subset of triples, or combining RDF graphs, may cause
syntax errors in parsers which recognize the extension conditions. None of the semantic extensions
normatively defined in this document impose such syntactic restrictions on RDF graphs.

All entailment regimes MUST be monotonic extensions of the simple entailment regime described in the
document, in the sense that if A simply entails B then A also entails B under any extended notion of
entailment, provided that any syntactic conditions of the extension are also satisfied. Put another way, a
semantic extension cannot "cancel" an entailment made by a weaker entailment regime, although it can
treat the result as a syntax error.

4. Notation and Terminology

This document uses the following terminology for describing RDF graph syntax, all as defined in the

companion RDF Concepts specification [RDF11-CONCEPTS]: IRI, RDF triple, RDF graph, subject,

predicate, object, RDF source, node, blank node, literal, isomorphic, and RDF dataset. All the
definitions in this document apply unchanged to generalized RDF triples, graphs, and datasets.

An interpretation is a mapping from IRIs and literals into a set, together with some constraints upon the
set and the mapping. This document defines various notions of interpretation, each corresponding in a

standard way to an entailment regime. These are identified by prefixes such as simple interpretation, etc.,

http://www.w3.org/TR/rdf11-concepts/#dfn-iri
http://www.w3.org/TR/rdf11-concepts/#section-triples
http://www.w3.org/TR/rdf11-concepts/#section-rdf-graph
http://www.w3.org/TR/rdf11-concepts/#section-triples
http://www.w3.org/TR/rdf11-concepts/#section-triples
http://www.w3.org/TR/rdf11-concepts/#section-triples
http://www.w3.org/TR/rdf11-concepts/#dfn-rdf-source
http://www.w3.org/TR/rdf11-concepts/#dfn-node
http://www.w3.org/TR/rdf11-concepts/#dfn-blank-node
http://www.w3.org/TR/rdf11-concepts/#dfn-literal
http://www.w3.org/TR/rdf11-concepts/#graph-isomorphism
http://www.w3.org/TR/rdf11-concepts/#section-dataset
http://www.w3.org/TR/rdf11-concepts/#section-generalized-rdf
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and are defined in later sections. The unqualified term interpretation is usually used to refer to any
compatible kind of interpretation in general, but if clear from the context might refer to a specific kind of
interpretation.

The words denotes and refers to are used interchangeably as synonyms for the relationship between an
IRI or literal and what it refers to in a given interpretation, itself called the denotation or referent. IRI
meanings may also be determined by other constraints external to the RDF semantics; when we wish to
refer to such an externally defined naming relationship, we will use the word identify and its cognates. For
example, the fact that the IRI http://www.w3.org/2001/XMLSchema#decimal is widely used as the name of

a datatype described in the XML Schema document [XMLSCHEMA11-2] might be described by saying

that the IRI identifies that datatype. If an IRI identifies something it may or may not refer to it in a given
interpretation, depending on how the semantics is specified. For example, an IRI used as a graph name
identifying a named graph in an RDF dataset may refer to something different from the graph it identifies.

Throughout this document, the equality sign = indicates strict identity. The statement "A = B" means that
there is one entity to which both expressions "A" and "B" refer. Angle brackets < x, y > are used to indicate
an ordered pair of x and y.

Throughout this document, RDF graphs and other fragments of RDF abstract syntax are written using the
notational conventions of the Turtle syntax [TURTLE]. The namespace prefixes rdf: rdfs: and xsd: are

used as in [RDF11-CONCEPTS], section 1.4. When the exact IRI does not matter, the prefix ex: is used.
When stating general rules or conditions we use three-character variables such as aaa, xxx, sss to
indicate arbitrary IRIs, literals, or other components of RDF syntax. Some cases are illustrated by node-arc
diagrams showing the graph structure directly.

A name is any IRI or literal. A typed literal contains two names: itself and its internal type IRI. A vocabulary
is a set of names.

The empty graph is the empty set of triples.

A subgraph of an RDF graph is a subset of the triples in the graph. A triple is identified with the singleton
set containing it, so that each triple in a graph is considered to be a subgraph. A proper subgraph is a
proper subset of the triples in the graph.

A ground RDF graph is one that contains no blank nodes.

Suppose that M is a functional mapping from a set of blank nodes to some set of literals, blank nodes and
IRIs. Any graph obtained from a graph G by replacing some or all of the blank nodes N in G by M(N) is an
instance of G. Any graph is an instance of itself, an instance of an instance of G is an instance of G, and if
H is an instance of G then every triple in H is an instance of at least one triple in G.

An instance with respect to a vocabulary V is an instance in which all the names in the instance that
were substituted for blank nodes in the original are names from V.

A proper instance of a graph is an instance in which a blank node has been replaced by a name, or two
blank nodes in the graph have been mapped into the same node in the instance.

Two graphs are isomorphic when each maps into the other by a 1:1 mapping on blank nodes. Isomorphic
graphs are mutual instances with an invertible instance mapping. As blank nodes have no particular
identity beyond their location in a graph, we will often treat isomorphic graphs as identical.

An RDF graph is lean if it has no instance which is a proper subgraph of itself. Non-lean graphs have
internal redundancy and express the same content as their lean subgraphs. For example, the graph

ex:a ex:p _:x .

_:y ex:p _:x .

is not lean, but

ex:a ex:p _:x .

_:x ex:p _:x .

is lean. Ground graphs are lean.

http://www.w3.org/TR/rdf11-concepts/#section-dataset
http://www.w3.org/TR/rdf11-concepts/#vocabularies
http://www.w3.org/TR/rdf11-concepts/#graph-isomorphism
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4.1 Shared blank nodes, unions and merges

Graphs share blank nodes only if they are derived from graphs described by documents or other structures
(such as an RDF dataset) that explicitly provide for the sharing of blank nodes between different RDF
graphs. Simply downloading a web document does not mean that the blank nodes in a resulting RDF
graph are the same as the blank nodes coming from other downloads of the same document or from the
same RDF source.

RDF applications which manipulate concrete syntaxes for RDF which use blank node identifiers should
take care to keep track of the identity of the blank nodes they identify. Blank node identifiers often have a
local scope, so when RDF from different sources is combined, identifiers may have to be changed in
order to avoid accidental conflation of distinct blank nodes.

For example, two documents may both use the blank node identifier "_:x" to identify a blank node, but
unless these documents are in a shared identifier scope or are derived from a common source, the
occurrences of "_:x" in one document will identify a different blank node than the one in the graph
described by the other document. When graphs are formed by combining RDF from multiple sources, it
may be necessary to standardize apart the blank node identifiers by replacing them by others which do
not occur in the other document(s). For example, the two graphs represented by the following texts:

ex:a ex:p _:x . 

ex:b ex:q _:x . 

contain four nodes. Their union would therefore also contain four nodes:

However, the document formed by simply concatenating these textual surface representations:

ex:a ex:p _:x .

ex:b ex:q _:x .

describes a graph containing three nodes:

since the two occurrences of the blank node identifier "_:x" occurring in a common identifier scope
identify the same blank node. The four-node union of these two graphs is more properly described by a
surface form such as:

ex:a ex:p _:x1 .

http://www.w3.org/TR/rdf11-concepts/#dfn-rdf-source
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ex:b ex:q _:x2 .

in which the blank node identifiers have been standardized apart to avoid conflating the distinct blank
nodes. (The particular blank node identifiers used have no significance, only that they are distinct.)

It is possible for two or more graphs to share a blank node, for example if they are subgraphs of a single
larger graph or derived from a common source. In this case, the union of a set of graphs preserves the
identity of blank nodes shared between the graphs. In general, the union of a set of RDF graphs accurately
represents the same semantic content as the graphs themselves, whether or not they share blank nodes.

A related operation, called merging, takes the union after forcing any shared blank nodes, which occur in
more than one graph, to be distinct in each graph. The resulting graph is called the merge. The merge of
subgraphs of a graph may be larger than the original graph. For example, the result of merging the two
singleton subgraphs of the three-node graph

is the four-node graph

The union is always an instance of the merge. If graphs have no blank nodes in common, then their merge
and union are identical.

5. Simple Interpretations

This section defines the basic notions of simple interpretation and truth for RDF graphs. All semantic
extensions of any vocabulary or higher-level notation encoded in RDF MUST conform to these minimal truth
conditions. Other semantic extensions may extend and add to these, but they MUST NOT modify or negate
them. For example, because simple interpretations are mappings which apply to IRIs, a semantic
extension cannot interpret different occurrences of a single IRI differently.

The entire semantics applies to RDF graphs, not to RDF sources. An RDF source has a semantic
meaning only through the graph that is its value at a given time, or in a given state. Graphs cannot change
their semantics with time.

A simple interpretation I is a structure consisting of:

Definition of a simple interpretation.

1. A non-empty set IR of resources, called the domain or universe of I.

2. A set IP, called the set of properties of I.

3. A mapping IEXT from IP into the powerset of IR x IR i.e. the set of sets of pairs < x, y > with x and y in
IR .

4. A mapping IS from IRIs into (IR union IP)

5. A partial mapping IL from literals into IR

Change Note
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The 2004 RDF 1.0 semantics defined simple interpretations relative to a vocabulary.

In the 2004 RDF 1.0 semantics, IL was a total, rather than partial, mapping.

The 2004 RDF 1.0 specification divided literals into 'plain' literals with no type and optional language tags, and typed
literals. Usage has shown that it is important that every literal have a type. RDF 1.1 replaces plain literals without
language tags by literals typed with the XML Schema string datatype, and introduces the special type rdf:langString
for language-tagged strings. The full semantics for typed literals is given in the next section.

Technical Note

Simple interpretations are required to interpret all names, and are therefore infinite. This simplifies the exposition.
However, RDF can be interpreted using finite structures, supporting decidable algorithms. Details are given in Appendix
B.

IEXT(x), called the extension of x, is a set of pairs which identify the arguments for which the property is
true, that is, a binary relational extension.

The distinction between IR and IL will become significant below when the semantics of datatypes are
defined. IL is allowed to be partial because some literals may fail to have a referent.

Technical Note

It is conventional to map a relation name to a relational extension directly. This however presumes that the vocabulary is
segregated into relation names and individual names, and RDF makes no such assumption. Moreover, RDF allows an IRI
to be used as a relation name applied to itself as an argument. Such self-application structures are used in RDFS, for
example. The use of the IEXT mapping to distinguish the relation as an object from its relational extension
accommodates both of these requirements. It also provides for a notion of RDFS 'class' which can be distinguished from
its set-theoretic extension. A similar technique is used in the ISO/IEC Common Logic standard [ISO24707].

The denotation of a ground RDF graph in a simple interpretation I is then given by the following rules,
where the interpretation is also treated as a function from expressions (names, triples and graphs) to
elements of the universe and truth values:

Semantic conditions for ground graphs.

if E is a literal then I(E) = IL(E)

if E is an IRI then I(E) = IS(E)

if E is a ground triple s p o. then I(E) = true if

I(p) is in IP and the pair <I(s),I(o)> is in IEXT(I(p))

otherwise I(E) = false.

if E is a ground RDF graph then I(E) = false if I(E') = false for some triple E' in E, otherwise I(E) =true.

If IL(E) is undefined for some literal E then E has no semantic value, so any triple containing it will be false,
so any graph containing that triple will also be false.

The final condition implies that the empty graph (the empty set of triples) is always true.

The sets IP and IR may overlap, indeed IP can be a subset of IR. Because of the domain conditions on
IEXT, the denotation of the subject and object of any true triple will be in IR; so any IRI which occurs in a
graph both as a predicate and as a subject or object will denote something in the intersection of IP and IR.

Semantic extensions may impose further constraints upon interpretation mappings by requiring some IRIs
to refer in particular ways. For example, D-interpretations, described below, require some IRIs, understood
as identifying and referring to datatypes, to have a fixed denotation.

5.1 Blank nodes

http://www.w3.org/TR/rdf11-concepts/#dfn-language-tagged-string
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Blank nodes are treated as simply indicating the existence of a thing, without using an IRI to identify any
particular thing. This is not the same as assuming that the blank node indicates an 'unknown' IRI.

Suppose I is a simple interpretation and A is a mapping from a set of blank nodes to the universe IR of I.
Define the mapping [I+A] to be I on names, and A on blank nodes on the set: [I+A](x)=I(x) when x is a name
and [I+A](x)=A(x) when x is a blank node; and extend this mapping to triples and RDF graphs using the
rules given above for ground graphs. Then the semantic conditions for an RDF graph are:

Semantic condition for blank nodes.

If E is an RDF graph then I(E) = true if [I+A](E) = true for some mapping A from the set of blank nodes in
E to IR, otherwise I(E)= false.

Mappings from blank nodes to referents are not part of the definition of a simple interpretation, since the

truth condition refers only to some such mapping. Blank nodes themselves differ from other nodes in not
being assigned a denotation by a simple interpretation, reflecting the intuition that they have no 'global'
meaning.

5.1.1 Shared blank nodes (Informative)

This section is non-normative.

The semantics for blank nodes are stated in terms of the truth of a graph. However, when two (or more)
graphs share a blank node, their meaning is not fully captured by treating them in isolation. For example,
consider the overlapping graphs

and a simple interpretation I over the universe {Alice, Bob, Monica, Ruth} with:
I(ex:Alice)=Alice, I(ex:Bob)=Bob, IEXT(I(ex:hasChild))={<Alice,Monica>,<Bob,Ruth> }

Each of the inner graphs is true under this interpretation, but the two of them together is not, because the
three-node graph says that Alice and Bob have a child together. In order to capture the full meaning of
graphs sharing a blank node, it is necessary to consider the union graph containing all the triples which
contain the blank node.

Technical Note

RDF graphs can be viewed as conjunctions of simple atomic sentences in first-order logic, where blank nodes are free
variables which are understood to be existential. Taking the union of two graphs is then analogous to syntactic
conjunction in this syntax. RDF syntax has no explicit variable-binding quantifiers, so the truth conditions for any RDF
graph treat the free variables in that graph as existentially quantified in that graph. Taking the union of graphs which share
a blank node changes the implied quantifier scopes.

5.2 Simple Entailment

Following standard terminology, we say that I (simply) satisfies E when I(E)=true, that E is (simply)
satisfiable when a simple interpretation exists which satisfies it, otherwise (simply) unsatisfiable, and
that a graph G simply entails a graph E when every interpretation which satisfies G also satisfies E. If two

graphs E and F each entail the other then they are logically equivalent.

In later sections these notions will be adapted to other classes of interpretations, but throughout this
section 'entailment' should be interpreted as meaning simple entailment.
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Technical Note

We do not define a notion of entailment between sets of graphs. To determine whether a set of graphs entails a graph,
the graphs in the set must first be combined into one graph, either by taking the union or the merge of the graphs. Unions
preserve the common meaning of shared blank nodes, while merging effectively ignores any sharing of blank nodes.
Merging the set of graphs produces the same definition of entailment by a set that was defined in the 2004 RDF 1.0
specification.

Any process which constructs a graph E from some other graph S is (simply) valid if S simply entails E in
every case, otherwise invalid.

The fact that an inference is valid should not be understood as meaning that any RDF application is
obliged or required to make the inference. Similarly, the logical invalidity of some RDF transformation or
process does not mean that the process is incorrect or prohibited. Nothing in this specification requires or
prohibits any particular operations on RDF graphs or sources. Entailment and validity are concerned
solely with establishing the conditions on such operations which guarantee the preservation of truth. While
logically invalid processes, which do not follow valid entailments, are not prohibited, users should be
aware that they may be at risk of introducing falsehoods into true RDF data. Nevertheless, particular uses
of logically invalid processes may be justified and appropriate for data processing under circumstances
where truth can be ensured by other means.

Entailment refers only to the truth of RDF graphs, not to their suitability for any other purpose. It is possible
for an RDF graph to be fitted for a given purpose and yet validly entail another graph which is not

appropriate for the same purpose. An example is the RDF test cases manifest [RDF-TESTCASES] which
is provided as an RDF document for user convenience. This document lists examples of correct
entailments by describing their antecedents and conclusions. Considered as an RDF graph, the manifest
simply entails a subgraph which omits the antecedents, and would therefore be incorrect if used as a test

case manifest. This is not a violation of the RDF semantic rules, but it shows that the property of "being a

correct RDF test case manifest" is not preserved under RDF entailment, and therefore cannot be
described as an RDF semantic extension. Such entailment-risky uses of RDF should be restricted to
cases, as here, where it is obvious to all parties what the intended special restrictions on entailment are, in
contrast with the more normal case of using RDF for the open publication of data on the Web.

5.3 Properties of simple entailment (Informative)

This section is non-normative.

The properties described here apply only to simple entailment, not to extended notions of entailment
introduced in later sections. Proofs are given in Appendix C.

This does not always hold for extended notions of interpretation. For example, a graph containing an ill-
typed literal is D-unsatisfiable.

The following interpolation lemma

completely characterizes simple entailment in syntactic terms. To detect whether one RDF graph simply
entails another, check that there is some instance of the entailed graph which is a subset of the first graph.

Technical Note

This is clearly decidable, but it is also difficult to determine in general, since one can encode the NP-hard subgraph
problem (detecting whether one mathematical graph is a subgraph of another) as detecting simple entailment between
RDF graphs. This construction (due to Jeremy Carroll) uses graphs all of whose nodes are blank nodes. The complexity
of checking simple entailment is reduced by having fewer blank nodes in the conclusion E. When E is a ground graph, it
is simply a matter of checking the subset relationship on sets of triples.

Interpolation has a number of direct consequences, for example:

Every graph is simply satisfiable.

G simply entails a graph E if and only if a subgraph of G is an instance of E.
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The property just above is called compactness - RDF is compact. As RDF graphs can be infinite, this is
sometimes important.

6. Skolemization (Informative)

This section is non-normative.

Skolemization is a transformation on RDF graphs which eliminates blank nodes by replacing them with
"new" IRIs, which means IRIs which are coined for this purpose and are therefore guaranteed to not occur

in any other RDF graph (at the time of creation). See Section 3.5 of [RDF11-CONCEPTS] for a fuller
discussion.

Suppose G is a graph containing blank nodes and sk is a skolemization mapping from the blank nodes in
G to the skolem IRIs which are substituted for them, so that sk(G) is a skolemization of G. Then the
semantic relationship between them can be summarized as follows.

The second property means that a graph is not logically equivalent to its skolemization. Nevertheless, they
are in a strong sense almost interchangeable, as shown the next two properties. The third property means
that even when conclusions are drawn from the skolemized graph which do contain the new vocabulary,
these will exactly mirror what could have been derived from the original graph with the original blank nodes
in place. The replacement of blank nodes by IRIs does not effectively alter what can be validly derived from
the graph, other than by giving new names to what were formerly anonymous entities. The fourth property,
which is a consequence of the third, clearly shows that in some sense a skolemization of G can "stand in
for" G as far as entailments are concerned. Using sk(G) instead of G will not affect any entailments which
do not involve the new skolem vocabulary.

7. Literals and datatypes

Change Note

In the 2004 RDF 1.0 specification, datatype D-entailment was defined as a semantic extension of RDFS-entailment. Here

The empty graph is simply entailed by any graph, and does not simply entail any graph except itself.

A graph simply entails all its subgraphs.

A graph is simply entailed by any of its instances.

If E is a lean graph and E' is a proper instance of E, then E does not simply entail E'.

If S is a subgraph of S' and S simply entails E, then S' simply entails E.

If S entails a finite graph E, then some finite subset S' of S entails E.

If E contains an IRI which does not occur anywhere in S, then S does not simply entail E.

sk(G) simply entails G (since sk(G) is an instance of G.)

G does not simply entail sk(G) (since sk(G) contains IRIs not in G.)

For any graph H, if sk(G) simply entails H then there is a graph H' such that G entails H' and H=sk(H') .

For any graph H which does not contain any of the "new" IRIs introduced into sk(G), sk(G) simply entails
H if and only if G simply entails H.

http://www.w3.org/TR/rdf11-concepts/#section-skolemization
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it is defined as a direct extension to basic RDF. This is more in conformity with actual usage, where RDF with datatypes

is widely used without the RDFS vocabulary. If there is a need to distinguish this from the 2004 RDF 1.0 terminology, the
longer phrasing "simple D-entailment" or "simple datatype entailment" should be used rather than "D-entailment".

Datatypes are identified by IRIs. Interpretations will vary according to which IRIs are recognized as
denoting datatypes. We describe this using a parameter D on simple interpretations, where D is the set of
recognized datatype IRIs.

Change Note

The previous version of this specification defined the parameter D as a datatype map from IRIs to datatypes, i.e. as a
restricted kind of interpretation mapping. As the current semantics presumes that a recognized IRI identifies a unique
datatype, this IRI-to-datatype mapping is globally unique and externally specified, so we can think of D as either a set of
IRIs or as a fixed datatype map. Formally, the datatype map corresponding to the set D is the restriction of a D-
interpretation to the set D. Semantic extensions which are stated in terms of conditions on datatype maps can be
interpreted as applying to this mapping.

The exact mechanism by which an IRI identifies a datatype is considered to be external to the semantics,
but the semantics presumes that a recognized IRI identifies a unique datatype wherever it occurs. RDF
processors which are not able to determine which datatype is identified by an IRI cannot recognize that IRI,
and should treat any literals with that IRI as their datatype IRI as unknown names.

RDF literals and datatypes are fully described in Section 5 of [RDF11-CONCEPTS]. In summary: with one
exception, RDF literals combine a string and an IRI identifying a datatype. The exception is language-
tagged strings, which have two syntactic components, a string and a language tag, and are assigned the
type rdf:langString. A datatype is understood to define a partial mapping, called the lexical-to-value
mapping, from a lexical space (a set of character strings) to values. The function L2V maps datatypes to
their lexical-to-value mapping. A literal with datatype d denotes the value obtained by applying this
mapping to the character string sss: L2V(d)(sss). If the literal string is not in the lexical space, so that the
lexical-to-value mapping gives no value for the literal string, then the literal has no referent. The value
space of a datatype is the range of the lexical-to-value mapping. Every literal with that type either refers to
a value in the value space of the type, or fails to refer at all. An ill-typed literal is one whose datatype IRI is
recognized, but whose character string is assigned no value by the lexical-to-value mapping for that
datatype.

RDF processors are not required to recognize any datatype IRIs other than rdf:langString and

xsd:string, but when IRIs listed in Section 5 of [RDF11-CONCEPTS] are recognized, they MUST be
interpreted as described there, and when the IRI rdf:PlainLiteral is recognized, it MUST be interpreted to
refer to the datatype defined in [RDF-PLAIN-LITERAL]. RDF processors MAY recognize other datatype
IRIs, but when other datatype IRIs are recognized, the mapping between the datatype IRI and the datatype
it refers to MUST be specified unambiguously, and MUST be fixed during all RDF transformations or
manipulations. In practice, this can be achieved by the IRI linking to an external specification of the
datatype which describes both the components of the datatype itself and the fact that the IRI identifies the
datatype, thereby fixing a value of the datatype map of this IRI.

Literals with rdf:langString as their datatype are an exceptional case which are given a special
treatment. The IRI rdf:langString is classified as a datatype IRI, and interpreted to refer to a datatype,
even though no L2V mapping is defined for it. The value space of rdf:langString is the set of all pairs of
a string with a language tag. The semantics of literals with this as their type are given below.

RDF literal syntax allows any IRI to be used in a typed literal, even when it is not recognized as referring to
a datatype. Literals with such an "unknown" datatype IRI, which is not in the set of recognized datatypes,
SHOULD NOT be treated as errors, although RDF applications MAY issue a warning. Such literals SHOULD be
treated like IRIs and assumed to denote some thing in the universe IR. RDF processors which do not
recognize a datatype IRI will not be able to detect some entailments which are visible to one which does.
For example, the fact that

ex:a ex:p "20.0000"̂ x̂sd:decimal .

entails

ex:a ex:p "20.0"̂ x̂sd:decimal .

will not be visible to a processor which does not recognize the datatype IRI xsd:decimal.

http://www.w3.org/TR/rdf11-concepts/#section-Datatypes
http://www.w3.org/TR/rdf11-concepts/#dfn-language-tagged-string
http://www.w3.org/TR/rdf11-concepts/#dfn-language-tagged-string
http://www.w3.org/TR/xmlschema11-2/#string
http://www.w3.org/TR/rdf11-concepts/#section-Datatypes
http://www.w3.org/TR/rdf11-concepts/#dfn-language-tagged-string
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7.1 D-interpretations

Let D be a set of IRIs identifying datatypes. A (simple) D-interpretation is a simple interpretation which

satisfies the following conditions:

Semantic conditions for datatyped literals.

If rdf:langString is in D, then for every language-tagged string E with lexical form sss and language
tag ttt, IL(E)= < sss, ttt' >, where ttt' is ttt converted to lower case using US-ASCII rules

For every other IRI aaa in D, I(aaa) is the datatype identified by aaa, and for every literal "sss"^^aaa,
IL("sss"^^aaa) = L2V(I(aaa))(sss)

If the literal is ill-typed then the L2V(I(aaa)) mapping has no value, and so the literal cannot denote
anything. In this case, any triple containing the literal must be false. Thus, any triple, and hence any graph,
containing an ill-typed literal will be D-unsatisfiable, i.e. false in every D-interpretation. This applies only to
literals typed with recognized datatype IRIs in D; literals with an unrecognized type IRI are not ill-typed and
cannot give rise to a D-unsatisfiable graph.

The special datatype rdf:langString has no ill-typed literals. Any syntactically legal literal with this type
will denote a value in every D-interpretation where D includes rdf:langString. The only ill-typed literals of

type xsd:string are those containing a Unicode code point which does not match the Char production in
[XML10]. Such strings cannot be written in an XML-compatible surface syntax.

Change Note

In the 2004 RDF 1.0 specification, ill-typed literals were required to denote a value in IR, and D-unsatisfiability could be
recognized only by using the RDFS semantics.

7.2 Datatype entailment

A graph is (simply) D-satisfiable or satisfiable recognizing D when it has the value true in some D-
interpretation, and a graph S (simply) D-entails or entails recognizing D a graph G when every D-
interpretation which satisfies S also D-satisfies G.

Unlike the case with simple interpretations, it is possible for a graph to have no satisfying D-
interpretations, i.e. to be D-unsatisfiable. RDF processors MAY treat an unsatisfiable graph as signaling
an error condition, but this is not required.

A D-unsatisfiable graph D-entails any graph.

Technical Note

The fact that an unsatisfiable statement entails any other statement has been known since antiquity. It is called the
principle of ex falso quodlibet. It should not be interpreted to mean that it is necessary, or even permissible, to actually
draw any conclusion from an unsatisfiable graph.

In all of this language, 'D' is being used as a parameter to represent some set of datatype IRIs, and
different D sets will yield different notions of satisfiability and entailment. The more datatypes are
recognized, the stronger is the entailment, so that if D ⊂ E and S E-entails G then S must D-entail G.
Simple entailment is { }-entailment, i.e. D-entailment when D is the empty set, so if S D-entails G then S
simply entails G.

7.2.1 Patterns of datatype entailment (Informative)

This section is non-normative.

Unlike simple entailment, it is not possible to give a single syntactic criterion to detect all D-entailments,
which can hold because of particular properties of the lexical-to-value mappings of the recognized
datatypes. For example, if D contains xsd:decimal then

ex:a ex:p "25.0"̂ x̂sd:decimal .

http://www.w3.org/TR/rdf11-concepts/#dfn-language-tagged-string
http://www.w3.org/TR/xmlschema11-2/#string
http://www.w3.org/TR/xml11/#NT-Char
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D-entails

ex:a ex:p "25"̂ x̂sd:decimal .

In general, any triple containing a literal with a recognized datatype IRI D-entails another literal when the
lexical strings of the literals map to the same value under the lexical-to-value map of the datatype. If two
different datatypes in D map lexical strings to a common value, then a triple containing a literal typed with
one datatype may D-entail another triple containing a literal typed with a different datatype. For example,
"25"̂ x̂sd:integer and "25.0"̂ x̂sd:decimal have the same value, so the above also D-entails

ex:a ex:p "25"̂ x̂sd:integer .

when D also contains xsd:integer.

(There is a W3C Note [SWBP-XSCH-DATATYPES] containing a long discussion of literal values.)

Ill-typed literals are the only way in which a graph can be simply D-unsatisfiable, but datatypes can give
rise to a variety of other unsatisfiable graphs when combined with the RDFS vocabulary, defined later.

8. RDF Interpretations

RDF interpretations impose extra semantic conditions on xsd:string and part of the infinite set of IRIs
with the namespace prefix rdf: .

RDF vocabulary

rdf:type rdf:subject rdf:predicate rdf:object rdf:first rdf:rest rdf:value rdf:nil

rdf:List rdf:langString rdf:Property rdf:_1 rdf:_2 ...

An RDF interpretation recognizing D is a D-interpretation I where D includes rdf:langString and
xsd:string, and which satisfies:

RDF semantic conditions.

x is in IP if and only if <x, I(rdf:Property)> is in IEXT(I(rdf:type))

For every IRI aaa in D, < x, I(aaa) > is in IEXT(I(rdf:type)) if and only if x is in the value space of I(aaa)

and satisfies every triple in the following infinite set:

RDF axioms.

rdf:type rdf:type rdf:Property .

rdf:subject rdf:type rdf:Property .

rdf:predicate rdf:type rdf:Property .

rdf:object rdf:type rdf:Property .

rdf:first rdf:type rdf:Property .

rdf:rest rdf:type rdf:Property .

rdf:value rdf:type rdf:Property .

rdf:nil rdf:type rdf:List .

rdf:_1 rdf:type rdf:Property .

rdf:_2 rdf:type rdf:Property .

... 

RDF imposes no particular normative meanings on the rest of the RDF vocabulary. Appendix D describes
the intended uses of some of this vocabulary.

The datatype IRIs rdf:langString and xsd:string MUST be recognized by all RDF interpretations.

Two other datatypes rdf:XMLLiteral and rdf:HTML are defined in [RDF11-CONCEPTS]. RDF-D
interpretations MAY fail to recognize these datatypes.

8.1 RDF entailment

http://www.w3.org/TR/swbp-xsch-datatypes/#sec-values
http://www.w3.org/TR/rdf11-concepts/#dfn-language-tagged-string
http://www.w3.org/TR/xmlschema11-2/#string
http://www.w3.org/TR/rdf11-concepts/#section-XMLLiteral
http://www.w3.org/TR/rdf11-concepts/#section-html
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S RDF entails E recognizing D when every RDF interpretation recognizing D which satisfies S also

satisfies E. When D is {rdf:langString, xsd:string} then we simply say S RDF entails E. E is RDF
unsatisfiable (recognizing D) when it has no satisfying RDF interpretation (recognizing D).

The properties of simple entailment described earlier do not all apply to RDF entailment. For example, all
the RDF axioms are true in every RDF interpretation, and so are RDF entailed by the empty graph,
contradicting interpolation for RDF entailment.

8.1.1 Patterns of RDF entailment (Informative)

This section is non-normative.

The last semantic condition in the above table gives the following entailment pattern for recognized
datatype IRIs:

RDF entailment pattern.

if S contains then S RDF entails, recognizing D

rdfD1
xxx aaa "sss"̂ d̂dd . 
for ddd in D

xxx aaa _:nnn .
_:nnn rdf:type ddd .

Note, this is valid even when the literal is ill-typed, since an unsatisfiable graph entails any triple.

For example,

ex:a ex:p "123"̂ x̂sd:integer .

RDF entails recognizing {xsd:integer}

ex:a ex:p _:x . 

_:x rdf:type xsd:integer .

In addition, the first RDF semantic condition justifies the following entailment pattern:

if S contains then S RDF entails, recognizing D

rdfD2 xxx aaa yyy . aaa rdf:type rdf:Property .

So that the above example also RDF entails

ex:p rdf:type rdf:Property .

recognizing {xsd:integer}.

Some datatypes support idiosyncratic entailment patterns which do not hold for other datatypes. For
example,

ex:a ex:p "true"̂ x̂sd:boolean . 

ex:a ex:p "false"̂ x̂sd:boolean .

ex:v rdf:type xsd:boolean .

together RDF entail

ex:a ex:p ex:v .

recognizing {xsd:boolean}.

In addition, the semantic conditions on value spaces may produce other unsatisfiable graphs. For
example, when D contains xsd:integer and xsd:boolean, then the following is RDF unsatisfiable
recognizing D:

_:x rdf:type xsd:boolean .

_:x rdf:type xsd:integer .
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9. RDFS Interpretations

RDF Schema [RDF11-SCHEMA] extends RDF to a larger vocabulary with more complex semantic
constraints:

RDFS vocabulary

rdfs:domain rdfs:range rdfs:Resource rdfs:Literal rdfs:Datatype rdfs:Class rdfs:subClassOf

rdfs:subPropertyOf rdfs:member rdfs:Container rdfs:ContainerMembershipProperty

rdfs:comment rdfs:seeAlso rdfs:isDefinedBy rdfs:label

(rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy and rdfs:label are included here because some
constraints which apply to their use can be stated using rdfs:domain, rdfs:range and
rdfs:subPropertyOf. Other than this, the formal semantics does not constrain their meanings.)

It is convenient to state the RDFS semantics in terms of a new semantic construct, a class, i.e. a resource
which represents a set of things in the universe which all have that class as a value of their rdf:type
property. Classes are defined to be things of type rdfs:Class, and the set of all classes in an
interpretation will be called IC. The semantic conditions are stated in terms of a mapping ICEXT (for the
Class Extension in I) from IC to the set of subsets of IR.

A class may have an empty class extension. Two different classes can have the same class extension.
The class extension of rdfs:Class contains the class rdfs:Class.

An RDFS interpretation (recognizing D) is an RDF interpretation (recognizing D) I which satisfies the

semantic conditions in the following table, and all the triples in the subsequent table of RDFS axiomatic
triples.

RDFS semantic conditions.

ICEXT(y) is defined to be { x : < x,y > is in IEXT(I(rdf:type)) }

IC is defined to be ICEXT(I(rdfs:Class))

LV is defined to be ICEXT(I(rdfs:Literal))

ICEXT(I(rdfs:Resource)) = IR

ICEXT(I(rdf:langString)) is the set {I(E) : E a language-tagged string }

for every other IRI aaa in D, ICEXT(I(aaa)) is the value space of I(aaa)

for every IRI aaa in D, I(aaa) is in ICEXT(I(rdfs:Datatype))

If < x,y > is in IEXT(I(rdfs:domain)) and < u,v > is in IEXT(x) then u is in ICEXT(y)

If < x,y > is in IEXT(I(rdfs:range)) and < u,v > is in IEXT(x) then v is in ICEXT(y)

IEXT(I(rdfs:subPropertyOf)) is transitive and reflexive on IP

If <x,y> is in IEXT(I(rdfs:subPropertyOf)) then x and y are in IP and IEXT(x) is a subset of IEXT(y)

If x is in IC then < x, I(rdfs:Resource) > is in IEXT(I(rdfs:subClassOf))
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IEXT(I(rdfs:subClassOf)) is transitive and reflexive on IC

If < x,y > is in IEXT(I(rdfs:subClassOf)) then x and y are in IC and ICEXT(x) is a subset of ICEXT(y)

If x is in ICEXT(I(rdfs:ContainerMembershipProperty)) then:
< x, I(rdfs:member) > is in IEXT(I(rdfs:subPropertyOf))

If x is in ICEXT(I(rdfs:Datatype)) then < x, I(rdfs:Literal) > is in IEXT(I(rdfs:subClassOf))

RDFS axiomatic triples.

rdf:type rdfs:domain rdfs:Resource .

rdfs:domain rdfs:domain rdf:Property .

rdfs:range rdfs:domain rdf:Property .

rdfs:subPropertyOf rdfs:domain rdf:Property .

rdfs:subClassOf rdfs:domain rdfs:Class .

rdf:subject rdfs:domain rdf:Statement .

rdf:predicate rdfs:domain rdf:Statement .

rdf:object rdfs:domain rdf:Statement .

rdfs:member rdfs:domain rdfs:Resource . 

rdf:first rdfs:domain rdf:List .

rdf:rest rdfs:domain rdf:List .

rdfs:seeAlso rdfs:domain rdfs:Resource .

rdfs:isDefinedBy rdfs:domain rdfs:Resource .

rdfs:comment rdfs:domain rdfs:Resource .

rdfs:label rdfs:domain rdfs:Resource .

rdf:value rdfs:domain rdfs:Resource .

rdf:type rdfs:range rdfs:Class .

rdfs:domain rdfs:range rdfs:Class .

rdfs:range rdfs:range rdfs:Class .

rdfs:subPropertyOf rdfs:range rdf:Property .

rdfs:subClassOf rdfs:range rdfs:Class .

rdf:subject rdfs:range rdfs:Resource .

rdf:predicate rdfs:range rdfs:Resource .

rdf:object rdfs:range rdfs:Resource .

rdfs:member rdfs:range rdfs:Resource .

rdf:first rdfs:range rdfs:Resource .

rdf:rest rdfs:range rdf:List .

rdfs:seeAlso rdfs:range rdfs:Resource .

rdfs:isDefinedBy rdfs:range rdfs:Resource .

rdfs:comment rdfs:range rdfs:Literal .

rdfs:label rdfs:range rdfs:Literal .

rdf:value rdfs:range rdfs:Resource .

rdf:Alt rdfs:subClassOf rdfs:Container .

rdf:Bag rdfs:subClassOf rdfs:Container .

rdf:Seq rdfs:subClassOf rdfs:Container .

rdfs:ContainerMembershipProperty rdfs:subClassOf rdf:Property .

rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso .

rdfs:Datatype rdfs:subClassOf rdfs:Class .

rdf:_1 rdf:type rdfs:ContainerMembershipProperty .

rdf:_1 rdfs:domain rdfs:Resource .

rdf:_1 rdfs:range rdfs:Resource . 
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rdf:_2 rdf:type rdfs:ContainerMembershipProperty .

rdf:_2 rdfs:domain rdfs:Resource .

rdf:_2 rdfs:range rdfs:Resource . 

... 

Change Note

In the 2004 RDF 1.0 semantics, LV was defined as part of a simple interpretation structure, and the definition given here
was a constraint.

Since I is an RDF interpretation, the first condition implies that IP = ICEXT(I(rdf:Property)).

The semantic conditions on RDF interpretations, together with the RDFS conditions on ICEXT, mean that
every recognized datatype can be treated as a class whose extension is the value space of the datatype,
and every literal with that datatype either fails to refer, or refers to a value in that class.

When using RDFS semantics, the referents of all recognized datatype IRIs can be considered to be in the
class rdfs:Datatype.

The axioms and conditions listed above have some redundancy. For example, all but one of the RDF
axiomatic triples can be derived from the RDFS axiomatic triples and the semantic conditions on ICEXT,
rdfs:domain and rdfs:range.

Other triples which must be true in all RDFS interpretations include the following. This is not a complete
set.

Some rdfs-valid triples.

rdfs:Resource rdf:type rdfs:Class .

rdfs:Class rdf:type rdfs:Class .

rdfs:Literal rdf:type rdfs:Class .

rdf:XMLLiteral rdf:type rdfs:Class .

rdf:HTML rdf:type rdfs:Class .

rdfs:Datatype rdf:type rdfs:Class .

rdf:Seq rdf:type rdfs:Class .

rdf:Bag rdf:type rdfs:Class .

rdf:Alt rdf:type rdfs:Class .

rdfs:Container rdf:type rdfs:Class .

rdf:List rdf:type rdfs:Class .

rdfs:ContainerMembershipProperty rdf:type rdfs:Class .

rdf:Property rdf:type rdfs:Class .

rdf:Statement rdf:type rdfs:Class .

rdfs:domain rdf:type rdf:Property .

rdfs:range rdf:type rdf:Property .

rdfs:subPropertyOf rdf:type rdf:Property .

rdfs:subClassOf rdf:type rdf:Property .

rdfs:member rdf:type rdf:Property .

rdfs:seeAlso rdf:type rdf:Property .

rdfs:isDefinedBy rdf:type rdf:Property .

rdfs:comment rdf:type rdf:Property .

rdfs:label rdf:type rdf:Property .

RDFS does not partition the universe into disjoint categories of classes, properties and individuals.
Anything in the universe can be used as a class or as a property, or both, while retaining its status as an
individual which may be in classes and have properties. Thus, RDFS permits classes which contain other
classes, classes of properties, properties of classes, etc. As the axiomatic triples above illustrate, it also
permits classes which contain themselves and properties which apply to themselves. A property of a class
is not necessarily a property of its members, nor vice versa.

9.1 A note on rdfs:Literal (Informative)

This section is non-normative.
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The class rdfs:Literal is not the class of literals, but rather that of literal values, which may also be
referred to by IRIs. For example, LV does not contain the literal "foodle"̂ x̂sd:string but it does contain
the string "foodle".

A triple of the form

ex:a rdf:type rdfs:Literal .

is consistent even though its subject is an IRI rather than a literal. It says that the IRI 'ex:a' refers to a literal
value, which is quite possible since literal values are things in the universe. Blank nodes may range over
literal values, for the same reason.

9.2 RDFS entailment

S RDFS entails E recognizing D when every RDFS interpretation recognizing D which satisfies S also
satisfies E.

Since every RDFS interpretation is an RDF interpretation, if S RDFS entails E then S also RDF entails E;
but RDFS entailment is stronger than RDF entailment. Even the empty graph has a large number of RDFS
entailments which are not RDF entailments, for example all triples of the form

aaa rdf:type rdfs:Resource .

where aaa is an IRI, are true in all RDFS interpretations.

9.2.1 Patterns of RDFS entailment (Informative)

This section is non-normative.

RDFS entailment holds for all the following patterns, which correspond closely to the RDFS semantic
conditions:

RDFS entailment patterns.

If S contains: then S RDFS entails recognizing D:

rdfs1 any IRI aaa in D aaa rdf:type rdfs:Datatype .

rdfs2
aaa rdfs:domain xxx .
yyy aaa zzz .

yyy rdf:type xxx .

rdfs3
aaa rdfs:range xxx .
yyy aaa zzz .

zzz rdf:type xxx .

rdfs4a xxx aaa yyy . xxx rdf:type rdfs:Resource .

rdfs4b xxx aaa yyy. yyy rdf:type rdfs:Resource .

rdfs5
xxx rdfs:subPropertyOf yyy .
yyy rdfs:subPropertyOf zzz .

xxx rdfs:subPropertyOf zzz .

rdfs6 xxx rdf:type rdf:Property . xxx rdfs:subPropertyOf xxx .

rdfs7
aaa rdfs:subPropertyOf bbb .
xxx aaa yyy .

xxx bbb yyy .

rdfs8 xxx rdf:type rdfs:Class .
xxx rdfs:subClassOf rdfs:Resource
.

rdfs9
xxx rdfs:subClassOf yyy .
zzz rdf:type xxx .

zzz rdf:type yyy .

rdfs10 xxx rdf:type rdfs:Class . xxx rdfs:subClassOf xxx .

rdfs11
xxx rdfs:subClassOf yyy .

xxx rdfs:subClassOf zzz .



21/3/2014 RDF 1.1 Semantics

http://www.w3.org/TR/rdf11-mt/ 19/28

yyy rdfs:subClassOf zzz .

rdfs12
xxx rdf:type rdfs:ContainerMembershipProperty
.

xxx rdfs:subPropertyOf rdfs:member
.

rdfs13 xxx rdf:type rdfs:Datatype . xxx rdfs:subClassOf rdfs:Literal .

RDFS provides for several new ways to be unsatisfiable recognizing D. For example, the following graph
is RDFS unsatisfiable recognizing {xsd:integer, xsd:boolean}:

ex:p rdfs:domain xsd:boolean .

ex:a rdf:type xsd:integer .

ex:a ex:p ex:c .

10. RDF Datasets

RDF datasets, defined in RDF Concepts [RDF11-CONCEPTS], package up zero or more named RDF
graphs along with a single unnamed, default RDF graph. The graphs in a single dataset may share blank
nodes. The association of graph name IRIs with graphs is used by SPARQL [SPARQL11-QUERY] to
allow queries to be directed against particular graphs.

Graph names in a dataset may refer to something other than the graph they are paired with. This allows IRI
referring to other kinds of entities, such as persons, to be used in a dataset to identify graphs of
information relevant to the entity denoted by the graph name IRI.

When a graph name is used inside RDF triples in a dataset it may or may not refer to the graph it names.
The semantics does not require, nor should RDF engines presume, without some external reason to do
so, that graph names used in RDF triples refer to the graph they name.

RDF datasets MAY be used to express RDF content. When used in this way, a dataset SHOULD be
understood to have at least the same content as its default graph. Note however that replacing the default
graph of a dataset by a logically equivalent graph will not in general produce a structurally similar dataset,
since it may for example disrupt co-occurrences of blank nodes between the default graph and other
graphs in the dataset, which may be important for reasons other than the semantics of the graphs in the
dataset.

Other semantic extensions and entailment regimes MAY place further semantic conditions and restrictions
on RDF datasets, just as with RDF graphs. One such extension, for example, could set up a modal-like
interpretation structure so that entailment between datasets would require RDF graph entailments
between the graphs with the same name (adding in empty graphs as required).

Appendices

A. Entailment rules (Informative)

This section is non-normative.

(This section is based on work described more fully in [HORST04], [HORST05], which should be
consulted for technical details and proofs.)

The RDF and RDFS entailment patterns listed in the above tables can be viewed as left-to-right rules
which add the entailed conclusion to a graph. These rule sets can be used to check RDF (or RDFS)
entailment between graphs S and E, by the following sequence of operations:

1. Add to S all the RDF (or RDF and RDFS) axiomatic triples except those containing the container
membership property IRIs rdf:_1, rdf:_2, ....
2. For every container membership property IRI which occurs in E, add the RDF (or RDF and RDFS)
axiomatic triples which contain that IRI.
3. Apply the RDF (or RDF and RDFS) inference patterns as rules, adding each conclusion to the graph, to
exhaustion; that is, until they generate no new triples. 
4. Determine if E has an instance which is a subset of the set, i.e. whether the enlarged set simply entails
E.

http://www.w3.org/TR/rdf11-concepts/#section-dataset
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This process is clearly correct, in that if it gives a positive result then indeed S does RDF (RDFS) entail E.
It is not, however, complete: there are cases of S entailing E which are not detectable by this process.
Examples include:

RDF entails

ex:a ex:p "string"̂ x̂sd:string .

ex:b ex:q "string"̂ x̂sd:string .

ex:a ex:p _:b .

ex:b ex:q _:b .

_:b rdf:type xsd:string .

RDFS entails

ex:a rdfs:subPropertyOf _:b .

_:b rdfs:domain ex:c .

ex:d ex:a ex:e .

ex:d rdf:type ex:c .

Both of these can be handled by allowing the rules to apply to a generalization of the RDF syntax in which
literals may occur in subject position and blank nodes may occur in predicate position.

Consider generalized RDF triples, graphs, and datasets instead of RDF triples, graphs and datasets

(extending the generalization used in [HORST04] and following exactly the terms used in [OWL2-
PROFILES]). The semantics described in this document applies to the generalization without change, so
that the notions of interpretation, satisfiability and entailment can be used freely. Then we can replace the
first RDF entailment pattern with the simpler and more direct

G-RDF-D entailment pattern.

if S contains then S RDF entails, recognizing D

GrdfD1
xxx aaa "sss"̂ d̂dd . 
for ddd in D

"sss"̂ d̂dd rdf:type ddd .

which gives the entailments;

ex:a ex:p "string"̂ x̂sd:string .

ex:b ex:q "string"̂ x̂sd:string .

"string"̂ x̂sd:string rdf:type xsd:string . by GrdfD1

which is an instance (in generalized RDF) of the desired conclusion, above.

The second example can be derived using the RDFS rules:

ex:a rdfs:subPropertyOf _:b .

_:b rdfs:domain ex:c .

ex:d ex:a ex:e .

ex:d _:b ex:c . by rdfs7
ex:d rdf:type ex:c . by rdfs2

Where the entailment patterns have been applied to generalized RDF syntax but yield a final conclusion
which is legal RDF.

With the generalized syntax, these rules are complete for both RDF and RDFS entailment. Stated exactly:

Let S and E be RDF graphs. Define the generalized RDF (RDFS) closure of S towards E to be the set

obtained by the following procedure.

1. Add to S all the RDF (and RDFS) axiomatic triples which do not contain any container membership
property IRI.
2. For each container membership property IRI which occurs in E, add the RDF (and RDFS) axiomatic
triples which contain that IRI.
3. If no triples were added in step 2., add the RDF (and RDFS) axiomatic triples which contain rdf:_1. 
4. Apply the rules GrdfD1 and rdfD2 (and the rules rdfs1 through rdfs13), with D={rdf:langString,
xsd:string), to the set in all possible ways, to exhaustion.

Then we have the completeness result:

http://www.w3.org/TR/rdf11-concepts/#section-generalized-rdf
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The closures are finite. The generation process is decidable and of polynomial complexity. Detecting
simple entailment is NP-complete in general, but of low polynomial order when E contains no blank nodes.

Every RDF(S) closure, even starting with the empty graph, will contain all RDF(S) tautologies which can be
expressed using the vocabulary of the original graph plus the RDF and RDFS vocabularies. In practice
there is little utility in re-deriving these, and a subset of the rules can be used to establish most entailments
of practical interest.

If it is important to stay within legal RDF syntax, rule rdfD1 may be used instead of GrdfD1, and the
introduced blank node can be used as a substitute for the literal in subsequent derivations. The resulting
set of rules will not however be complete.

As noted earlier, detecting datatype entailment for larger sets of datatype IRIs requires attention to
idiosyncratic properties of the particular datatypes.

B. Finite interpretations (Informative)

This section is non-normative.

To keep the exposition simple, the RDF semantics has been phrased in a way which requires
interpretations to be larger than absolutely necessary. For example, all interpretations are required to
interpret the whole IRI vocabulary, and the universes of all D-interpretations where D contains xsd:string
must contain all possible strings and therefore be infinite. This appendix sketches, without proof, how to re-
state the semantics using smaller semantic structures, without changing any entailments.

Basically, it is only necessary for an interpretation structure to interpret the names actually used in the
graphs whose entailment is being considered, and to consider interpretations whose universes are at
most as big as the number of names and blank nodes in the graphs. More formally, we can define a pre-
interpretation over a vocabulary V to be a structure I similar to a simple interpretation but with a mapping
only from V to its universe IR. Then when determining whether G entails E, consider only pre-
interpretations over the finite vocabulary of names actually used in G union E. The universe of such a pre-
interpretation can be restricted to the cardinality N+B+1, where N is the size of the vocabulary and B is the
number of blank nodes in the graphs. Any such pre-interpretation may be extended to simple
interpretations, all of which which will give the same truth values for any triples in G or E. Satisfiability,
entailment and so on can then be defined with respect to these finite pre-interpretations, and shown to be
identical to the ideas defined in the body of the specification.

When considering D-entailment, pre-interpretations may be kept finite by weakening the semantic
conditions for datatyped literals so that IR need contain literal values only for literals which actually occur in
G or E, and the size of the universe restricted to (N+B)×(D+1), where D is the number of recognized
datatypes. (A tighter bound is possible.) For RDF entailment, only the finite part of the RDF vocabulary
which includes those container membership properties which actually occur in the graphs need to be
interpreted, and the second RDF semantic condition is weakened to apply only to values which are values
of literals which actually occur in the vocabulary. For RDFS interpretations, again only that finite part of the
infinite container membership property vocabulary which actually occurs in the graphs under consideration
needs to be interpreted. In all these cases, a pre-interpretation of the vocabulary of a graph may be
extended to a full interpretation of the appropriate type without changing the truth-values of any triples in the
graphs.

The whole semantics could be stated in terms of pre-interpretations, yielding the same entailments, and

allowing finite RDF graphs to be interpreted in finite structures, if the finite model property is considered
important.

C. Proofs of some results (Informative)

This section is non-normative.

If S is RDF (RDFS) consistent, then S RDF entails (RDFS entails) E just when the generalized RDF
(RDFS) closure of S towards E simply entails E.

The empty graph is simply entailed by any graph, and does not simply entail any graph except itself.
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The empty graph is true in all simple interpretations, so is entailed by any graph. If G contains a triple <a b
c>, then any simple interpretation I with IEXT(I(b))={ } makes G false; so the empty graph does not entail G.
QED.

If I satisfies G then it satisfies every triple in G, hence every triple in any subset of G. QED.

Suppose H is an instance of G with the instantiation mapping M, and that I satisfies H. For blank nodes n
in G which are not in H define A(n)=I(M(n)); then I+A satisfies G, so I satisfies G. QED.

Consider the simple interpretation with universe {x}, IEXT(x)= <x,x > and I(aaa)=x for any IRI aaa. This
interpretation satisfies every RDF graph. QED.

If a subgraph E' of G is an instance of E then G entails E' which entails E, so G entails E. Now suppose G
entails E, and consider the Herbrand interpretation I of G defined as follows. IR contains the names and
blank nodes which occur in the graph, with I(n)=n for each name n; n is in IP and <a, b> in IEXT(n) just when
the triple <a n b> is in the graph. (For IRIs which do not occur in the graph, assign them values in IR at
random.) I satisfies every triple <s p o> in E; that is, for some mapping A from the blank nodes of E to the
vocabulary of G, the triple <[I+A](s) I(p) [I+A](o)> occurs in G. But this is an instance of <s p o> under the
instance mapping A; so an instance of E is a subgraph of G. QED.

Suppose E entails E', then a subgraph of E is an instance of E', which is a proper instance of E; so a
subgraph of E is a proper instance of E, so E is not lean. QED.

IF S entails E then a subgraph of S is an instance of E, so every IRI in E must occur in that subgraph, so
must occur in S. QED.

The skolemization mapping sk substitutes a unique new IRI for each blank node, so it is 1:1, so has an
inverse. Define ks to be the inverse mapping which replaces each skolem IRI by the blank node it
replaced. Since sk(G) entails H, a subgraph of sk(G) is an instance of H, say A(H) for some instance
mapping A on the blank nodes in H. Then ks(A(H)) is a subgraph of G; and ks(A(H))=A(ks(H)) since the
domains of A and ks are disjoint. So ks(H) has an instance which is a subgraph of G, so is entailed by G;
and H=sk(ks(H)). QED.

Using the terminology in the previous proof: if H does not contain any skolem IRIs, then H=ks(H). So if
sk(G) entails H then G entails ks(H)=H; and if G entails H then sk(G) entails G entails H, so sk(G) entails H.
QED.

D. RDF reification, containers and collections (Informative)

A graph simply entails all its subgraphs.

A graph is simply entailed by any of its instances.

Every graph is simply satisfiable.

G simply entails a graph E if and only if a subgraph of G is an instance of E.

if E is lean and E' is a proper instance of E, then E does not simply entail E'.

If E contains an IRI which does not occur in S, then S does not simply entail E.

For any graph H, if sk(G) simply entails H there there is a graph H' such that G entails H' and H=sk(H').

For any graph H which does not contain any of the "new" IRIs introduced into sk(G), sk(G) simply entails
H if and only if G simply entails H.

http://en.wikipedia.org/wiki/Herbrand_interpretation
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This section is non-normative.

The RDF semantic conditions do not place formal constraints on the meaning of much of the RDF
vocabulary which is intended for use in describing containers and bounded collections, or the reification
vocabulary intended to enable an RDF graph to describe RDF triples. This appendix briefly reviews the
intended meanings of this vocabulary.

The omission of these conditions from the formal semantics is a design decision to accommodate
variations in existing RDF usage and to make it easier to implement processes to check formal RDF
entailment. For example, implementations may decide to use special procedural techniques to implement
the RDF collection vocabulary.

D.1 Reification

RDF reification vocabulary

rdf:Statement rdf:subject rdf:predicate rdf:object

The intended meaning of this vocabulary is to allow an RDF graph to act as metadata describing other
RDF triples.

Consider an example graph containing a single triple:

ex:a ex:b ex:c .

and suppose that IRI ex:graph1 is used to identify this graph. Exactly how this identification is achieved is
external to the RDF model, but it might be by the IRI resolving to a concrete syntax document describing
the graph, or by the IRI being the associated name of a named graph in a dataset. Assuming that the IRI
can be used to refer to the triple, then the reification vocabulary allows us to describe the first graph in
another graph:

ex:graph1 rdf:type rdf:Statement .

ex:graph1 rdf:subject ex:a .

ex:graph1 rdf:predicate ex:b .

ex:graph1 rdf:object ex:c .

The second graph is called a reification of the triple in the first graph.

Reification is not a form of quotation. Rather, the reification describes the relationship between a token of
a triple and the resources that the triple refers to. The value of the rdf:subject property is not the subject
IRI itself but the thing it denotes, and similarly for rdf:predicate and rdf:object. For example, if the
referent of ex:a is Mount Everest, then the subject of the reified triple is also the mountain, not the IRI which
refers to it.

Reifications can be written with a blank node as subject, or with an IRI subject which does not identify any
concrete realization of a triple, in both of which cases they simply assert the existence of the described
triple.

The subject of a reification is intended to refer to a concrete realization of an RDF triple, such as a
document in a surface syntax, rather than a triple considered as an abstract object. This supports use
cases where properties such as dates of composition or provenance information are applied to the reified
triple, which are meaningful only when thought of as referring to a particular instance or token of a triple.

A reification of a triple does not entail the triple, and is not entailed by it. The reification only says that the
triple token exists and what it is about, not that it is true, so it does not entail the triple. On the other hand,
asserting a triple does not automatically imply that any triple tokens exist in the universe being described
by the triple. For example, the triple might be part of an ontology describing animals, which could be
satisfied by an interpretation in which the universe contained only animals, and in which a reification of it
was therefore false.

Since the relation between triples and reifications of triples in any RDF graph or graphs need not be one-
to-one, asserting a property about some entity described by a reification need not entail that the same
property holds of another such entity, even if it has the same components. For example,
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_:xxx rdf:type rdf:Statement .

_:xxx rdf:subject ex:subject .

_:xxx rdf:predicate ex:predicate .

_:xxx rdf:object ex:object .

_:yyy rdf:type rdf:Statement .

_:yyy rdf:subject ex:subject .

_:yyy rdf:predicate ex:predicate .

_:yyy rdf:object ex:object .

_:xxx ex:property ex:foo .

does not entail

_:yyy ex:property ex:foo .

D.2 RDF containers

RDF(S) Container Vocabulary

rdf:Seq rdf:Bag rdf:Alt rdf:_1 rdf:_2 ... rdfs:member rdfs:Container

rdfs:ContainerMembershipProperty

RDF provides vocabularies for describing three classes of containers. Containers have a type, and their
members can be enumerated by using a fixed set of container membership properties. These properties
are indexed by integers to provide a way to distinguish the members from each other, but these indices
should not necessarily be thought of as defining an ordering of the container itself; some containers are
considered to be unordered.

The RDFS vocabulary adds a generic membership property which holds regardless of position, and
classes containing all the containers and all the membership properties.

One should understand this vocabulary as describing containers, rather than as a tool for constructing
them, as would typically be supplied by a programming language. The actual containers are entities in the
semantic universe, and RDF graphs which use the vocabulary simply provide very basic information about
these entities, enabling an RDF graph to characterize the container type and give partial information about
the members of a container. Since the RDF container vocabulary is so limited, many natural assumptions
concerning RDF containers cannot be formally sanctioned by the RDF formal semantics. This should not
be taken as meaning that these assumptions are false, but only that RDF does not formally entail that they
must be true.

There are no special semantic conditions on the container vocabulary: the only structure which RDF
presumes its containers to have is what can be inferred from the use of this vocabulary and the general
RDF semantic conditions. This amounts to knowing the type of a container, and having a partial
enumeration of the items in the container. The intended mode of use is that things of type rdf:Bag are
considered to be unordered but to allow duplicates; things of type rdf:Seq are considered to be ordered,
and things of type rdf:Alt are considered to represent a collection of alternatives, possibly with a
preference ordering. If the container is of an ordered type, then the ordering of items in the container is
intended to be indicated by the numerical ordering of the container membership properties, which are
assumed to be single-valued. However, these informal conditions are not reflected in any formal RDF
entailments.

The RDF semantics does not support any entailments which could arise from enumerating the elements of
an unordered rdf:Bag in a different order. For example,

_:xxx rdf:type rdf:Bag .

_:xxx rdf:_1 ex:a .

_:xxx rdf:_2 ex:b .

does not entail

_:xxx rdf:_1 ex:b .

_:xxx rdf:_2 ex:a .
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(If this conclusion were valid, then the result of adding it to the original graph would be entailed by the
graph, and this would assert that both elements were in both positions. This is a consequence of the fact
that RDF is a purely assertional language.)

There is no assumption that a property of a container applies to any of the elements of the container, or
vice versa.

There is no formal requirement that the three container classes are disjoint, so that for example it is
consistent to assert that something is both an rdf:Bag and an rdf:Seq. There is no assumption that
containers are gap-free, so that for example

_:xxx rdf:type rdf:Seq.

_:xxx rdf:_1 ex:a .

_:xxx rdf:_3 ex:c .

does not entail

_:xxx rdf:_2 _:yyy .

There is no way in RDF to assert that a container contains only a fixed number of members. This is a
reflection of the fact that it is always consistent to add a triple to a graph asserting a membership property
of any container. And finally, there is no built-in assumption that an RDF container has only finitely many
members.

D.3 RDF collections

RDF Collection Vocabulary

rdf:List rdf:first rdf:rest rdf:nil

RDF provides a vocabulary for describing collections, i.e.'list structures', in terms of head-tail links.
Collections differ from containers in allowing branching structure and in having an explicit terminator,
allowing applications to determine the exact set of items in the collection.

As with containers, no special semantic conditions are imposed on this vocabulary other than the type of
rdf:nil being rdf:List. It is intended for use typically in a context where a container is described using
blank nodes to connect a 'well-formed' sequence of items, each described by two triples of the form 

_:c1 rdf:first aaa .

_:c1 rdf:rest _:c2 .

where the final item is indicated by the use of rdf:nil as the value of the property rdf:rest. In a familiar
convention, rdf:nil can be thought of as the empty collection. Any such graph amounts to an assertion
that the collection exists, and since the members of the collection can be determined by inspection, this is
often sufficient to enable applications to determine what is meant. The semantics does not require any
collections to exist other than those mentioned explicitly in a graph (and the empty collection). For
example, the existence of a collection containing two items does not automatically guarantee that the
similar collection with the items permuted also exists: 

_:c1 rdf:first ex:aaa .

_:c1 rdf:rest _:c2 .

_:c2 rdf:first ex:bbb .

_:c2 rdf:rest rdf:nil .

does not entail

_:c3 rdf:first ex:bbb .

_:c3 rdf:rest _:c4 .

_:c4 rdf:first ex:aaa .

_:c4 rdf:rest rdf:nil .

Also, RDF imposes no 'well-formedness' conditions on the use of this vocabulary, so that it is possible to
write RDF graphs which assert the existence of highly peculiar objects such as lists with forked or non-list



21/3/2014 RDF 1.1 Semantics

http://www.w3.org/TR/rdf11-mt/ 26/28

tails, or multiple heads:

_:666 rdf:first ex:aaa .

_:666 rdf:first ex:bbb .

_:666 rdf:rest ex:ccc .

_:666 rdf:rest rdf:nil .

It is also possible to write a set of triples which under-specify a collection by failing to specify its rdf:rest
property value.

Semantic extensions may place extra syntactic well-formedness restrictions on the use of this vocabulary
in order to rule out such graphs. They may exclude interpretations of the collection vocabulary which violate
the convention that the subject of a 'linked' collection of two-triple items of the form described above,
ending with an item ending with rdf:nil, denotes a totally ordered sequence whose members are the
denotations of the rdf:first values of the items, in the order got by tracing the rdf:rest properties from
the subject to rdf:nil. This permits sequences which contain other sequences.

The RDFS semantic conditions require that any subject of the rdf:first property, and any subject or
object of the rdf:rest property, be of rdf:type rdf:List.

E. Change Log (informative)

This section is non-normative.

Changes since Proposed Recommendation:

Typo fixed in Sec. 7.

Changes since Candidate Recommendation:

Minor typos corrected. Some text added to section 7 defining datatype maps.

Changes since Last Call:

Repaired several broken internal links and typos.
Added table of RDF vocabulary.
Added text mentioning lexical spaces in datatypes.
Added extended change note defining datatype map.
Removed informative section on intuitive summary of truth conditions
Added a general description of the notion of interpretation.
Adjusted several uses of "interpretation" and related terminology to state the particular kind of
interpretation in question or use a more appropriate term.
Brian McBride was acknowledged as series editor of the previous version.
The wording looking like a definition of RDF Datasets was replaced by more informative wording.
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